

Welcome to PyCryptodome’s documentation

	PyCryptodome

	Features

	Installation
	Compiling in Linux Ubuntu

	Compiling in Linux Fedora

	Windows (from sources)

	Documentation

	PGP verification

	Compatibility with PyCrypto

	API documentation

	Examples
	Encrypt data with AES

	Generate an RSA key

	Generate public key and private key

	Encrypt data with RSA

	Frequently Asked Questions
	Is CTR cipher mode compatible with Java?

	Are RSASSA-PSS signatures compatible with Java or OpenSSL?

	Why do I get the error No module named Crypto on Windows?

	Why does strxor raise TypeError: argument 2 must be bytes, not bytearray?

	Contribute and support

	Future plans

	Changelog
	3.14.1 (5 February 2022)
	Resolved issues

	3.14.0 (30 January 2022)
	New features

	3.13.0 (23 January 2022)
	New features

	Resolved issues

	Other changes

	3.12.0 (4 December 2021)
	New features

	Resolved issues

	3.11.0 (8 October 2021)
	Resolved issues

	New features

	3.10.4 (25 September 2021)
	Resolved issues

	3.10.3 (22 September 2021)
	Resolved issues

	New features

	Other changes

	3.10.1 (9 February 2021)
	Other changes

	3.10.0 (6 February 2021)
	Resolved issues

	Other changes

	Breaks in compatibility

	3.9.9 (2 November 2020)
	Resolved issues

	New features

	3.9.8 (23 June 2020)
	Resolved issues

	New features

	3.9.7 (20 February 2020)
	Resolved issues

	3.9.6 (2 February 2020)
	Resolved issues

	3.9.5 (1 February 2020)
	Resolved issues

	New features

	3.9.4 (18 November 2019)
	Resolved issues

	3.9.3 (12 November 2019)
	Resolved issues

	3.9.2 (10 November 2019)
	New features

	Resolved issues

	3.9.1 (1 November 2019)
	New features

	Resolved issues

	3.9.0 (27 August 2019)
	New features

	Resolved issues

	3.8.2 (30 May 2019)
	Resolved issues

	3.8.1 (4 April 2019)
	New features

	Resolved issues

	3.8.0 (23 March 2019)
	New features

	Resolved issues

	Breaks in compatibility

	3.7.3 (19 January 2019)
	Resolved issues

	3.7.2 (26 November 2018)
	Resolved issues

	3.7.1 (25 November 2018)
	New features

	Resolved issues

	3.7.0 (27 October 2018)
	New features

	Resolved issues

	Breaks in compatibility

	3.6.6 (17 August 2018)
	Resolved issues

	3.6.5 (12 August 2018)
	Resolved issues

	3.6.4 (10 July 2018)
	New features

	Resolved issues

	3.6.3 (21 June 2018)
	Resolved issues

	3.6.2 (19 June 2018)
	New features

	Resolved issues

	Breaks in compatibility

	3.6.1 (15 April 2018)
	New features

	Resolved issues

	3.6.0 (8 April 2018)
	New features

	Resolved issues

	3.5.1 (8 March 2018)
	Resolved issues

	3.5.0 (7 March 2018)
	New features

	Resolved issues

	Breaks in compatibility

	3.4.12 (5 February 2018)
	Resolved issues

	3.4.11 (5 February 2018)
	Resolved issues

	3.4.10 (2 February 2018)
	Resolved issues

	3.4.9 (1 February 2018)
	New features

	Resolved issues

	3.4.8 (27 January 2018)
	New features

	Resolved issues

	3.4.7 (26 August 2017)
	New features

	Resolved issues

	3.4.6 (18 May 2017)
	Resolved issues

	3.4.5 (6 February 2017)
	Resolved issues

	3.4.4 (1 February 2017)
	Resolved issues

	3.4.3 (17 October 2016)
	Resolved issues

	3.4.2 (8 March 2016)
	Resolved issues

	3.4.1 (21 February 2016)
	New features

	3.4 (7 February 2016)
	New features

	Resolved issues

	Breaks in compatibility

	3.3.1 (1 November 2015)
	New features

	Resolved issues

	Breaks in compatibility

	3.3 (29 October 2015)
	New features

	Resolved issues

	Breaks in compatibility

	3.2.1 (9 September 2015)
	New features

	3.2 (6 September 2015)
	New features

	Resolved issues

	Breaks in compatibility

	3.1 (15 March 2015)
	New features

	Resolved issues

	Breaks in compatibility

	3.0 (24 June 2014)
	New features

	Resolved issues

	Breaks in compatibility

	Other changes

	License
	Public domain

	BSD license

 [image: ../_images/badge.svg]
 [https://github.com/Legrandin/pycryptodome/actions]
PyCryptodome

PyCryptodome is a self-contained Python package of low-level
cryptographic primitives.

It supports Python 2.7, Python 3.5 and newer, and PyPy.

The installation procedure depends on the package you want the library to be in.
PyCryptodome can be used as:

	an almost drop-in replacement for the old PyCrypto library.
You install it with:

pip install pycryptodome

In this case, all modules are installed under the Crypto package.

One must avoid having both PyCrypto and PyCryptodome installed
at the same time, as they will interfere with each other.

This option is therefore recommended only when you are sure that
the whole application is deployed in a virtualenv.

	a library independent of the old PyCrypto.
You install it with:

pip install pycryptodomex

In this case, all modules are installed under the Cryptodome package.
PyCrypto and PyCryptodome can coexist.

For faster public key operations in Unix, you should install GMP [https://gmplib.org] in your system.

PyCryptodome is a fork of PyCrypto. It brings the following enhancements
with respect to the last official version of PyCrypto (2.6.1):

	Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB)

	Accelerated AES on Intel platforms via AES-NI

	First class support for PyPy

	Elliptic curves cryptography (NIST curves P-192, P-224, P-256, P-384 and P-521)

	Better and more compact API (nonce and iv attributes for ciphers,
automatic generation of random nonces and IVs, simplified CTR cipher mode,
and more)

	SHA-3 hash algorithms (FIPS 202) and derived functions (NIST SP-800 185):

	SHAKE128 and SHA256 XOFs

	cSHAKE128 and cSHAKE256 XOFs

	KMAC128 and KMAC256

	TupleHash128 and TupleHash256

	KangarooTwelve XOF (derived from Keccak)

	Truncated hash algorithms SHA-512/224 and SHA-512/256 (FIPS 180-4)

	BLAKE2b and BLAKE2s hash algorithms

	Salsa20 and ChaCha20/XChaCha20 stream ciphers

	Poly1305 MAC

	ChaCha20-Poly1305 and XChaCha20-Poly1305 authenticated ciphers

	scrypt, bcrypt and HKDF derivation functions

	Deterministic (EC)DSA

	Password-protected PKCS#8 key containers

	Shamir’s Secret Sharing scheme

	Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace)

	Simplified install process, including better support for Windows

	Cleaner RSA and DSA key generation (largely based on FIPS 186-4)

	Major clean ups and simplification of the code base

PyCryptodome is not a wrapper to a separate C library like OpenSSL.
To the largest possible extent, algorithms are implemented in pure Python.
Only the pieces that are extremely critical to performance (e.g. block ciphers)
are implemented as C extensions.

For more information, see the homepage [https://www.pycryptodome.org].

For security issues, please send an email to security@pycryptodome.org.

All the code can be downloaded from GitHub [https://github.com/Legrandin/pycryptodome].

Features

This page lists the low-level primitives that PyCryptodome provides.

You are expected to have a solid understanding of cryptography and security
engineering to successfully use them.

You must also be able to recognize that some primitives are obsolete (e.g. TDES)
or even unsecure (RC4). They are provided only to enable backward compatibility
where required by the applications.

A list of useful resources in that area can be found on Matthew Green’s blog [http://blog.cryptographyengineering.com/p/useful-cryptography-resources.html].

	Symmetric ciphers:

	AES

	Single and Triple DES (legacy)

	CAST-128 (legacy)

	RC2 (legacy)

	Traditional modes of operations for symmetric ciphers:

	ECB

	CBC

	CFB

	OFB

	CTR

	OpenPGP (a variant of CFB, RFC4880)

	Authenticated Encryption:

	CCM (AES only)

	EAX

	GCM (AES only)

	SIV (AES only)

	OCB (AES only)

	ChaCha20-Poly1305

	Stream ciphers:

	Salsa20

	ChaCha20

	RC4 (legacy)

	Cryptographic hashes:

	SHA-1

	SHA-2 hashes (224, 256, 384, 512, 512/224, 512/256)

	SHA-3 hashes (224, 256, 384, 512) and XOFs (SHAKE128, SHAKE256)

	Functions derived from SHA-3 (cSHAKE128, cSHAKE256, TupleHash128, TupleHash256)

	KangarooTwelve (XOF)

	Keccak (original submission to SHA-3)

	BLAKE2b and BLAKE2s

	RIPE-MD160 (legacy)

	MD5 (legacy)

	Message Authentication Codes (MAC):

	HMAC

	CMAC

	KMAC128 and KMAC256

	Poly1305

	Asymmetric key generation:

	RSA

	ECC (NIST curves P-192, P-224, P-256, P-384 and P-521)

	DSA

	ElGamal (legacy)

	Export and import format for asymmetric keys:

	PEM (clear and encrypted)

	PKCS#8 (clear and encrypted)

	ASN.1 DER

	Asymmetric ciphers:

	PKCS#1 (RSA)

	RSAES-PKCS1-v1_5

	RSAES-OAEP

	Asymmetric digital signatures:

	PKCS#1 (RSA)

	RSASSA-PKCS1-v1_5

	RSASSA-PSS

	(EC)DSA

	Nonce-based (FIPS 186-3)

	Deterministic (RFC6979)

	Key derivation:

	PBKDF2

	scrypt

	HKDF

	PBKDF1 (legacy)

	Other cryptographic protocols:

	Shamir Secret Sharing

	Padding

	PKCS#7

	ISO-7816

	X.923

Installation

The installation procedure depends on the package you want the library to be in.
PyCryptodome can be used as:

	An almost drop-in replacement for the old PyCrypto library.
You install it with:

pip install pycryptodome

In this case, all modules are installed under the Crypto package.
You can test everything is right with:

pip install pycryptodome-test-vectors
python -m Crypto.SelfTest

One must avoid having both PyCrypto and PyCryptodome installed
at the same time, as they will interfere with each other.
This option is therefore recommended only when you are sure that
the whole application is deployed in a virtualenv.

	A library independent of the old PyCrypto.
You install it with:

pip install pycryptodomex

You can test everything is right with:

pip install pycryptodome-test-vectors
python -m Cryptodome.SelfTest

In this case, all modules are installed under the Cryptodome package.
The old PyCrypto and PyCryptodome can coexist.

Note

If you intend to run PyCryptodome with Python 2.7 under Windows, you must first install
the Microsoft Visual C++ 2015 Redistributable [https://www.microsoft.com/en-us/download/details.aspx?id=52685].
That is not necessary if you use Python 3.

 Compatibility with PyCrypto

Compatibility with PyCrypto

PyCryptodome exposes almost the same API as the old PyCrypto [https://www.dlitz.net/software/pycrypto]
so that most applications will run unmodified.
However, a very few breaks in compatibility had to be introduced
for those parts of the API that represented a security hazard or that
were too hard to maintain.

Specifically, for public key cryptography:

	The following methods from public key objects (RSA, DSA, ElGamal) have been
removed:

	sign()

	verify()

	encrypt()

	decrypt()

	blind()

	unblind()

Applications should be updated to use instead:

	Crypto.Cipher.PKCS1_OAEP for encrypting using RSA.

	Crypto.Signature.pkcs1_15 or Crypto.Signature.pss for signing using RSA.

	Crypto.Signature.DSS for signing using DSA.

	Method: generate() for public key modules does not accept the progress_func parameter anymore.

	Ambiguous method size from RSA, DSA and ElGamal key objects have been removed.
Instead, use methods size_in_bytes() and size_in_bits() and check the documentation.

	The 3 public key object types (RSA, DSA, ElGamal) are now unpickable.
You must use the export_key() method of each key object and select a good output format: for private
keys that means a good password-based encryption scheme.

	Removed attribute Crypto.PublicKey.RSA.algorithmIdentifier.

	Removed Crypto.PublicKey.RSA.RSAImplementation (which should have been private in the first place).
Same for Crypto.PublicKey.DSA.DSAImplementation.

For symmetric key cryptography:

	Symmetric ciphers do not have ECB as default mode anymore. ECB is not semantically secure
and it exposes correlation across blocks.
An expression like AES.new(key) will now fail. If ECB is the desired mode,
one has to explicitly use AES.new(key, AES.MODE_ECB).

	Crypto.Cipher.DES3 does not allow keys that degenerate to Single DES.

	Parameter segment_size cannot be 0 for the CFB mode.

	Parameters disabled_shortcut and overflow cannot be passed anymore to Crypto.Util.Counter.new.
Parameter allow_wraparound is ignored (counter block wraparound will always be checked).

	The counter parameter of a CTR mode cipher must be generated via
Crypto.Util.Counter. It cannot be a generic callable anymore.

	Keys for Crypto.Cipher.ARC2, Crypto.Cipher.ARC4 and Crypto.Cipher.Blowfish must be at least 40 bits long (still very weak).

The following packages, modules and functions have been removed:

	Crypto.Random.OSRNG, Crypto.Util.winrandom and Crypto.Random.randpool.
You should use Crypto.Random only.

	Crypto.Cipher.XOR. If you just want to XOR data, use Crypto.Util.strxor.

	Crypto.Hash.new. Use Crypto.Hash.<algorithm>.new() instead.

	Crypto.Protocol.AllOrNothing

	Crypto.Protocol.Chaffing

	Crypto.Util.number.getRandomNumber

	Crypto.pct_warnings

Others:

	Support for any Python version older than 2.6 is dropped.

 API documentation

API documentation

All cryptographic functionalities are organized in sub-packages;
each sub-package is dedicated to solving a specific class of problems.

	Package

	Description

	Crypto.Cipher

	Modules for protecting confidentiality
that is, for encrypting and decrypting data (example: AES).

	Crypto.Signature

	Modules for assuring authenticity,
that is, for creating and verifying digital signatures of messages
(example: PKCS#1 v1.5).

	Crypto.Hash

	Modules for creating cryptographic digests
(example: SHA-256).

	Crypto.PublicKey

	Modules for generating, exporting or importing
public keys (example: RSA or ECC).

	Crypto.Protocol

	Modules for faciliting secure communications
between parties, in most cases by leveraging cryptograpic primitives
from other modules (example: Shamir’s Secret Sharing scheme).

	Crypto.IO

	Modules for dealing with encodings commonly used
for cryptographic data (example: PEM).

	Crypto.Random

	Modules for generating random data.

	Crypto.Util

	General purpose routines (example: XOR for byte
strings).

In certain cases, there is some overlap between these categories.
For instance, authenticity is also provided by Message Authentication Codes,
and some can be built using digests, so they are included in the Crypto.Hash
package (example: HMAC).
Also, cryptographers have over time realized that encryption without
authentication is often of limited value so recent ciphers found in the
Crypto.Cipher package embed it (example: GCM).

PyCryptodome strives to maintain strong backward compatibility with the old
PyCrypto’s API (except for those few cases where that is harmful to security)
so a few modules don’t appear where they should (example: the ASN.1 module
is under Crypto.Util as opposed to Crypto.IO).

 Crypto.Cipher package

Crypto.Cipher package

Introduction

The Crypto.Cipher package contains algorithms for protecting the confidentiality
of data.

There are three types of encryption algorithms:

	Symmetric ciphers: all parties use the same key, for both
decrypting and encrypting data.
Symmetric ciphers are typically very fast and can process
very large amount of data.

	Asymmetric ciphers: senders and receivers use different keys.
Senders encrypt with public keys (non-secret) whereas receivers
decrypt with private keys (secret).
Asymmetric ciphers are typically very slow and can process
only very small payloads. Example: PKCS#1 OAEP (RSA).

	Hybrid ciphers: the two types of ciphers above can be combined
in a construction that inherits the benefits of both.
An asymmetric cipher is used to protect a short-lived
symmetric key,
and a symmetric cipher (under that key) encrypts
the actual message.

API principles

[image: ../../_images/simple_mode.png]

Fig. 1 Generic state diagram for a cipher object

The base API of a cipher is fairly simple:

	You instantiate a cipher object by calling the new()
function from the relevant cipher module (e.g. Crypto.Cipher.AES.new()).
The first parameter is always the cryptographic key;
its length depends on the particular cipher.
You can (and sometimes must) pass additional cipher- or mode-specific parameters
to new() (such as a nonce or a mode of operation).

	For encrypting data, you call the encrypt() method of the cipher
object with the plaintext. The method returns the piece of ciphertext.
Alternatively, with the output parameter you can specify
a pre-allocated buffer for the result.

For most algorithms, you may call encrypt() multiple times
(i.e. once for each piece of plaintext).

	For decrypting data, you call the decrypt() method of the cipher
object with the ciphertext. The method returns the piece of plaintext.
The output parameter can be passed here too.

	For most algorithms, you may call decrypt() multiple times

	(i.e. once for each piece of ciphertext).

Note

Plaintexts and ciphertexts (input/output) can only be bytes,
bytearray or memoryview.
In Python 3, you cannot pass strings.
In Python 2, you cannot pass Unicode strings.

 Classic modes of operation for symmetric block ciphers

Classic modes of operation for symmetric block ciphers

A block cipher uses a symmetric key to encrypt data of fixed and very short length
(the block size), such as 16 bytes for AES.
In order to cope with data of arbitrary length, the cipher must be
combined with a mode of operation.

You create a cipher object with the new() function
in the relevant module under Crypto.Cipher:

	the first parameter is always the cryptographic key (a byte string)

	the second parameter is always the constant that selects the desired
mode of operation

Constants for each mode of operation are defined at the module level for each algorithm.
Their name starts with MODE_, for instance Crypto.Cipher.AES.MODE_CBC.
Note that not all ciphers support all modes.

For instance:

>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_CBC)
>>>
>>> # You can now use use cipher to encrypt or decrypt...

The state machine for a cipher configured with a classic mode is:

[image: ../../_images/simple_mode.png]

Fig. 2 Generic state diagram for a cipher object

What follows is a list of classic modes of operation: they all provide confidentiality
but not data integrity (unlike modern AEAD modes, which are described in another section).

ECB mode

Electronic CodeBook [https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29].
The most basic but also the weakest mode of operation.
Each block of plaintext is encrypted independently of any other block.

Warning

The ECB mode should not be used because it is semantically insecure [https://en.wikipedia.org/wiki/Semantic_security].
For one, it exposes correlation between blocks.

 Modern modes of operation for symmetric block ciphers

Modern modes of operation for symmetric block ciphers

Classic modes of operation such as CBC only provide guarantees over
the confidentiality of the message but not over its integrity.
In other words, they don’t allow the receiver to establish if the
ciphertext was modified in transit or if it really originates
from a certain source.

For that reason, classic modes of operation have been often paired with
a MAC primitive (such as Crypto.Hash.HMAC), but the
combination is not always straightforward, efficient or secure.

Recently, new modes of operations (AEAD, for Authenticated Encryption
with Associated Data [https://en.wikipedia.org/wiki/Authenticated_encryption])
have been designed to combine encryption and authentication into a single,
efficient primitive. Optionally, some part of the message can also be left in the
clear (non-confidential associated data, such as headers),
while the whole message remains fully authenticated.

In addition to the ciphertext and a nonce (or IV - Initialization
Vector), AEAD modes require the additional delivery of a MAC tag.

This is the state machine for a cipher object:

[image: ../../_images/aead.png]

Fig. 3 Generic state diagram for a AEAD cipher mode

Beside the usual encrypt() and decrypt() already
available for classic modes of operation, several other methods are present:

	
update(data)

	Authenticate those parts of the message that get delivered as is,
without any encryption (like headers).
It is similar to the update() method of a MAC object.
Note that all data passed to encrypt() and decrypt() get
automatically authenticated already.

	Parameters:

	data (bytes) – the extra data to authenticate

	
digest()

	Create the final authentication tag (MAC tag) for a message.

	Return bytes:

	the MAC tag

	
hexdigest()

	Equivalent to digest(), with the output encoded in hexadecimal.

	Return str:

	the MAC tag as a hexadecimal string

	
verify(mac_tag)

	Check if the provided authentication tag (MAC tag) is valid, that is, if the message
has been decrypted using the right key and if no modification has taken
place in transit.

	Parameters:

	mac_tag (bytes) – the MAC tag

	Raises:

	ValueError – if the MAC tag is not valid, that is, if the entire message
should not be trusted.

	
hexverify(mac_tag_hex)

	Same as verify() but accepts the MAC tag encoded as an hexadecimal
string.

	Parameters:

	mac_tag_hex (str) – the MAC tag as a hexadecimal string

	Raises:

	ValueError – if the MAC tag is not valid, that is, if the entire message
should not be trusted.

	
encrypt_and_digest(plaintext, output=None)

	Perform encrypt() and digest() in one go.

	Parameters:

	plaintext (bytes) – the last piece of plaintext to encrypt

	Keyword Arguments:

	output (bytes/bytearray/memoryview) – the pre-allocated buffer
where the ciphertext must be stored (as opposed to being returned).

	Returns:

	a tuple with two items

	the ciphertext, as bytes

	the MAC tag, as bytes

The first item becomes None when the output parameter
specified a location for the result.

	
decrypt_and_verify(ciphertext, mac_tag, output=None)

	Perform decrypt() and verify() in one go.

	Parameters:

	ciphertext (bytes) – the last piece of ciphertext to decrypt

	Keyword Arguments:

	output (bytes/bytearray/memoryview) – the pre-allocated buffer
where the plaintext must be stored (as opposed to being returned).

	Raises:

	ValueError – if the MAC tag is not valid, that is, if the entire message
should not be trusted.

CCM mode

Counter with CBC-MAC [https://en.wikipedia.org/wiki/CCM_mode], defined in
RFC3610 [https://tools.ietf.org/html/rfc3610] or
NIST SP 800-38C [http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C.pdf].
It only works with ciphers having block size 128 bits (like AES).

The new() function at the module level under Crypto.Cipher instantiates
a new CCM cipher object for the relevant base algorithm.
In the following definition, <algorithm> can only be AES today:

	
Crypto.Cipher.<algorithm>.new(key, mode, *, nonce=None, mac_len=None, msg_len=None, assoc_len=None)

	Create a new CCM object, using <algorithm> as the base block cipher.

	Parameters:

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_CCM

	nonce (bytes) – the value of the fixed nonce.
It must be unique for the combination message/key.
For AES, its length varies from 7 to 13 bytes.
The longer the nonce, the smaller the allowed message size
(with a nonce of 13 bytes, the message cannot exceed 64KB).
If not present, the library creates a 11 bytes random nonce (the maximum
message size is 8GB).

	mac_len (integer) – the desired length of the
MAC tag (default if not present: 16 bytes).

	msg_len (integer) – pre-declaration of the length of the
message to encipher. If not specified, encrypt() and decrypt()
can only be called once.

	assoc_len (integer) – pre-declaration of the length of the
associated data. If not specified, some extra buffering will take place
internally.

	Returns:

	a CTR cipher object

The cipher object has a read-only attribute nonce.

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b"header"
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_CCM)
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(data)
>>>
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> json_v = [b64encode(x).decode('utf-8') for x in cipher.nonce, header, ciphertext, tag]
>>> result = json.dumps(dict(zip(json_k, json_v)))
>>> print(result)
{"nonce": "p6ffzcKw+6xopVQ=", "header": "aGVhZGVy", "ciphertext": "860kZo/G", "tag": "Ck5YpVCM6fdWnFkFxw8K6A=="}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in json_k}
>>>
>>> cipher = AES.new(key, AES.MODE_CCM, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
>>> print("The message was: " + plaintext)
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

EAX mode

An AEAD mode designed for NIST by
Bellare, Rogaway, and Wagner in 2003 [http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax/eax-spec.pdf].

The new() function at the module level under Crypto.Cipher instantiates
a new EAX cipher object for the relevant base algorithm.

	
Crypto.Cipher.<algorithm>.new(key, mode, *, nonce=None, mac_len=None)

	Create a new EAX object, using <algorithm> as the base block cipher.

	Parameters:

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_EAX

	nonce (bytes) – the value of the fixed nonce.
It must be unique for the combination message/key.
If not present, the library creates a random nonce (16 bytes long for AES).

	mac_len (integer) – the desired length of the
MAC tag (default if not present: the cipher’s block size, 16 bytes for AES).

	Returns:

	an EAX cipher object

The cipher object has a read-only attribute nonce.

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b"header"
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_EAX)
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(data)
>>>
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> json_v = [b64encode(x).decode('utf-8') for x in cipher.nonce, header, ciphertext, tag]
>>> result = json.dumps(dict(zip(json_k, json_v)))
>>> print(result)
{"nonce": "CSIJ+e8KP7HJo+hC4RXIyQ==", "header": "aGVhZGVy", "ciphertext": "9YYjuAn6", "tag": "kXHrs9ZwYmjDkmfEJx7Clg=="}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in json_k}
>>>
>>> cipher = AES.new(key, AES.MODE_EAX, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
>>> print("The message was: " + plaintext)
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

GCM mode

Galois/Counter Mode [https://en.wikipedia.org/wiki/Galois/Counter_Mode],
defined in NIST SP 800-38D [http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf].
It only works in combination with a 128 bits cipher like AES.

The new() function at the module level under Crypto.Cipher instantiates
a new GCM cipher object for the relevant base algorithm.

	
Crypto.Cipher.<algorithm>.new(key, mode, *, nonce=None, mac_len=None)

	Create a new GCM object, using <algorithm> as the base block cipher.

	Parameters:

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_GCM

	nonce (bytes) – the value of the fixed nonce.
It must be unique for the combination message/key.
If not present, the library creates a random nonce (16 bytes long for AES).

	mac_len (integer) – the desired length of the
MAC tag, from 4 to 16 bytes (default: 16).

	Returns:

	a GCM cipher object

The cipher object has a read-only attribute nonce.

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b"header"
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_GCM)
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(data)
>>>
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> json_v = [b64encode(x).decode('utf-8') for x in [cipher.nonce, header, ciphertext, tag]]
>>> result = json.dumps(dict(zip(json_k, json_v)))
>>> print(result)
{"nonce": "DpOK8NIOuSOQlTq+BphKWw==", "header": "aGVhZGVy", "ciphertext": "CZVqyacc", "tag": "B2tBgICbyw+Wji9KpLVa8w=="}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>> from Crypto.Util.Padding import unpad
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in json_k}
>>>
>>> cipher = AES.new(key, AES.MODE_GCM, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
>>> print("The message was: " + plaintext)
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

Note

GCM is most commonly used with 96-bit (12-byte) nonces, which is also the length recommended by NIST SP 800-38D.

If interoperability is important, one should take into account that the library default
of a 128-bit random nonce may not be (easily) supported by other implementations.
A 96-bit nonce can be explicitly generated for a new encryption cipher:

>>> key = get_random_bytes(16)
>>> nonce = get_random_bytes(12)
>>> cipher = AES.new(key, AES.MODE_GCM, nonce=nonce)

 Crypto.Signature package

Crypto.Signature package

The Crypto.Signature package contains algorithms for performing digital
signatures, used to guarantee integrity and non-repudiation.

Digital signatures are based on public key cryptography: the party that signs a
message holds the private key, the one that verifies the signature holds the
public key.

Signing a message

	Instantiate a new signer object for the desired algorithm,
for instance with Crypto.Signature.pkcs1_15.new().
The first parameter is the key object (private key)
obtained via the Crypto.PublicKey module.

	Instantiate a cryptographic hash object, for instance with Crypto.Hash.SHA384.new().
Then, process the message with its update() method.

	Invoke the sign() method on the signer with the hash object as parameter.
The output is the signature of the message (a byte string).

Verifying a signature

	Instantiate a new verifier object for the desired algorithm,
for instance with Crypto.Signature.pkcs1_15.new().
The first parameter is the key object (public key)
obtained via the Crypto.PublicKey module.

	Instantiate a cryptographic hash object, for instance with Crypto.Hash.SHA384.new().
Then, process the message with its update() method.

	Invoke the verify() method on the verifier, with the hash object and the incoming signature as parameters.
If the message is not authentic, an ValueError is raised.

Available mechanisms

	PKCS#1 v1.5 (RSA)

	PKCS#1 PSS (RSA)

	Digital Signature Algorithm (DSA and ECDSA)

 Crypto.Hash package

Crypto.Hash package

Cryptographic hash functions take arbitrary binary strings as input,
and produce a random-like fixed-length output (called digest or hash value).

It is practically infeasible to derive the original input data
from the digest. In other words, the cryptographic hash function is one-way
(pre-image resistance).

Given the digest of one message, it is also practically infeasible
to find another message (second pre-image) with the same digest
(weak collision resistance).

Finally, it is infeasible to find two arbitrary messages with the
same digest (strong collision resistance).

Regardless of the hash algorithm, an n bits long digest is at most
as secure as a symmetric encryption algorithm keyed with n/2 bits
(birthday attack [https://en.wikipedia.org/wiki/Birthday_attack]).

Hash functions can be simply used as integrity checks. In
combination with a public-key algorithm, you can implement a
digital signature.

API principles

[image: ../../_images/hashing.png]

Fig. 5 Generic state diagram for a hash object

Every time you want to hash a message, you have to create a new hash object
with the new() function in the relevant algorithm module (e.g.
Crypto.Hash.SHA256.new()).

A first piece of message to hash can be passed to new() with the data parameter:

>> from Crypto.Hash import SHA256
>>
>> hash_object = SHA256.new(data=b'First')

Note

You can only hash byte strings or byte arrays (no Python 2 Unicode strings
or Python 3 strings).

 Crypto.PublicKey package

Crypto.PublicKey package

In a public key cryptography system, senders and receivers do not use the same key.
Instead, the system defines a key pair, with one of the keys being
confidential (private) and the other not (public).

	Algorithm

	Sender uses..

	Receiver uses…

	Encryption

	Public key

	Private key

	Signature

	Private key

	Public key

Unlike keys meant for symmetric cipher algorithms (typically just
random bit strings), keys for public key algorithms have very specific
properties. This module collects all methods to generate, validate,
store and retrieve public keys.

API principles

Asymmetric keys are represented by Python objects. Each object can be either
a private key or a public key (the method has_private() can be used
to distinguish them).

A key object can be created in four ways:

	generate() at the module level (e.g. Crypto.PublicKey.RSA.generate()).
The key is randomly created each time.

	import_key() at the module level (e.g. Crypto.PublicKey.RSA.import_key()).
The key is loaded from memory.

	construct() at the module level (e.g. Crypto.PublicKey.RSA.construct()).
The key will be built from a set of sub-components.

	publickey() at the object level (e.g. Crypto.PublicKey.RSA.RsaKey.publickey()).
The key will be the public key matching the given object.

A key object can be serialized via its export_key() method.

Keys objects can be compared via the usual operators == and != (note that the two halves of the same key,
private and public, are considered as two different keys).

Available key types

	RSA keys

	DSA keys

	Elliptic Curve keys

Obsolete key type

	ElGamal keys

 RSA

RSA

RSA [http://en.wikipedia.org/wiki/RSA_%28algorithm%29] is the most widespread and used public key algorithm. Its security is
based on the difficulty of factoring large integers. The algorithm has
withstood attacks for more than 30 years, and it is therefore considered
reasonably secure for new designs.

The algorithm can be used for both confidentiality (encryption) and
authentication (digital signature). It is worth noting that signing and
decryption are significantly slower than verification and encryption.

The cryptographic strength is primarily linked to the length of the RSA modulus n.
In 2017, a sufficient length is deemed to be 2048 bits. For more information,
see the most recent ECRYPT [http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf] report.

Both RSA ciphertexts and RSA signatures are as large as the RSA modulus n (256
bytes if n is 2048 bit long).

The module Crypto.PublicKey.RSA provides facilities for generating new RSA keys,
reconstructing them from known components, exporting them, and importing them.

As an example, this is how you generate a new RSA key pair, save it in a file
called mykey.pem, and then read it back:

>>> from Crypto.PublicKey import RSA
>>>
>>> key = RSA.generate(2048)
>>> f = open('mykey.pem','wb')
>>> f.write(key.export_key('PEM'))
>>> f.close()
...
>>> f = open('mykey.pem','r')
>>> key = RSA.import_key(f.read())

	
Crypto.PublicKey.RSA.generate(bits, randfunc=None, e=65537)

	Create a new RSA key pair.

The algorithm closely follows NIST FIPS 186-4 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf] in its
sections B.3.1 and B.3.3. The modulus is the product of
two non-strong probable primes.
Each prime passes a suitable number of Miller-Rabin tests
with random bases and a single Lucas test.

	Parameters:

	
	bits (integer) – Key length, or size (in bits) of the RSA modulus.
It must be at least 1024, but 2048 is recommended.
The FIPS standard only defines 1024, 2048 and 3072.

	randfunc (callable) – Function that returns random bytes.
The default is Crypto.Random.get_random_bytes().

	e (integer) – Public RSA exponent. It must be an odd positive integer.
It is typically a small number with very few ones in its
binary representation.
The FIPS standard requires the public exponent to be
at least 65537 (the default).

Returns: an RSA key object (RsaKey, with private key).

	
Crypto.PublicKey.RSA.construct(rsa_components, consistency_check=True)

	Construct an RSA key from a tuple of valid RSA components.

The modulus n must be the product of two primes.
The public exponent e must be odd and larger than 1.

In case of a private key, the following equations must apply:

\[\begin{split}\begin{align}
p*q &= n \\
e*d &\equiv 1 (\text{mod lcm} [(p-1)(q-1)]) \\
p*u &\equiv 1 (\text{mod } q)
\end{align}\end{split}\]

	Parameters:

	
	rsa_components (tuple) – A tuple of integers, with at least 2 and no
more than 6 items. The items come in the following order:

	RSA modulus n.

	Public exponent e.

	Private exponent d.
Only required if the key is private.

	First factor of n (p).
Optional, but the other factor q must also be present.

	Second factor of n (q). Optional.

	CRT coefficient q, that is \(p^{-1} \text{mod }q\). Optional.

	consistency_check (boolean) – If True, the library will verify that the provided components
fulfil the main RSA properties.

	Raises:

	ValueError – when the key being imported fails the most basic RSA validity checks.

Returns: An RSA key object (RsaKey).

	
Crypto.PublicKey.RSA.import_key(extern_key, passphrase=None)

	Import an RSA key (public or private).

	Parameters:

	
	extern_key (string or byte string) – The RSA key to import.

The following formats are supported for an RSA public key:

	X.509 certificate (binary or PEM format)

	X.509 subjectPublicKeyInfo DER SEQUENCE (binary or PEM
encoding)

	PKCS#1 [http://www.ietf.org/rfc/rfc3447.txt] RSAPublicKey DER SEQUENCE (binary or PEM encoding)

	An OpenSSH line (e.g. the content of ~/.ssh/id_ecdsa, ASCII)

The following formats are supported for an RSA private key:

	PKCS#1 RSAPrivateKey DER SEQUENCE (binary or PEM encoding)

	PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt] PrivateKeyInfo or EncryptedPrivateKeyInfo
DER SEQUENCE (binary or PEM encoding)

	OpenSSH (text format, introduced in OpenSSH 6.5 [https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf])

For details about the PEM encoding, see RFC1421 [http://www.ietf.org/rfc/rfc1421.txt]/RFC1423 [http://www.ietf.org/rfc/rfc1423.txt].

	passphrase (string or byte string) – For private keys only, the pass phrase that encrypts the key.

Returns: An RSA key object (RsaKey).

	Raises:

	ValueError/IndexError/TypeError – When the given key cannot be parsed (possibly because the pass
phrase is wrong).

	
class Crypto.PublicKey.RSA.RsaKey(**kwargs)

	Class defining an actual RSA key.
Do not instantiate directly.
Use generate(), construct() or import_key() instead.

	Variables:

	
	n (integer) – RSA modulus

	e (integer) – RSA public exponent

	d (integer) – RSA private exponent

	p (integer) – First factor of the RSA modulus

	q (integer) – Second factor of the RSA modulus

	u (integer) – Chinese remainder component (\(p^{-1} \text{mod } q\))

	Undocumented:

	exportKey, publickey

	
exportKey(format='PEM', passphrase=None, pkcs=1, protection=None, randfunc=None)

	Export this RSA key.

	Parameters:

	
	format (string) – The format to use for wrapping the key:

	’PEM’. (Default) Text encoding, done according to RFC1421 [http://www.ietf.org/rfc/rfc1421.txt]/RFC1423 [http://www.ietf.org/rfc/rfc1423.txt].

	’DER’. Binary encoding.

	’OpenSSH’. Textual encoding, done according to OpenSSH specification.
Only suitable for public keys (not private keys).

	passphrase (string) – (For private keys only) The pass phrase used for protecting the output.

	pkcs (integer) – (For private keys only) The ASN.1 structure to use for
serializing the key. Note that even in case of PEM
encoding, there is an inner ASN.1 DER structure.

With pkcs=1 (default), the private key is encoded in a
simple PKCS#1 [http://www.ietf.org/rfc/rfc3447.txt] structure (RSAPrivateKey).

With pkcs=8, the private key is encoded in a PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt] structure
(PrivateKeyInfo).

Note

This parameter is ignored for a public key.
For DER and PEM, an ASN.1 DER SubjectPublicKeyInfo
structure is always used.

 DSA

DSA

DSA [http://en.wikipedia.org/wiki/Digital_Signature_Algorithm] is a widespread public key signature algorithm. Its security is
based on the discrete logarithm problem (DLP [http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf]). Given a cyclic
group, a generator g, and an element h, it is hard
to find an integer x such that \(g^x = h\). The problem is believed
to be difficult, and it has been proved such (and therefore secure) for
more than 30 years.

The group is actually a sub-group over the integers modulo p, with p prime.
The sub-group order is q, which is prime too; it always holds that (p-1) is a multiple of q.
The cryptographic strength is linked to the magnitude of p and q.
The signer holds a value x (0<x<q-1) as private key, and its public
key (y where \(y=g^x \text{ mod } p\)) is distributed.

In 2017, a sufficient size is deemed to be 2048 bits for p and 256 bits for q.
For more information, see the most recent ECRYPT [http://www.ecrypt.eu.org/documents/D.SPA.17.pdf] report.

The algorithm can only be used for authentication (digital signature).
DSA cannot be used for confidentiality (encryption).

The values (p,q,g) are called domain parameters;
they are not sensitive but must be shared by both parties (the signer and the verifier).
Different signers can share the same domain parameters with no security
concerns.

The DSA signature is twice as big as the size of q (64 bytes if q is 256 bit
long).

This module provides facilities for generating new DSA keys and for constructing
them from known components.

As an example, this is how you generate a new DSA key pair, save the public
key in a file called public_key.pem, sign a message (with
Crypto.Signature.DSS), and verify it:

>>> from Crypto.PublicKey import DSA
>>> from Crypto.Signature import DSS
>>> from Crypto.Hash import SHA256
>>>
>>> # Create a new DSA key
>>> key = DSA.generate(2048)
>>> f = open("public_key.pem", "w")
>>> f.write(key.publickey().export_key())
>>> f.close()
>>>
>>> # Sign a message
>>> message = b"Hello"
>>> hash_obj = SHA256.new(message)
>>> signer = DSS.new(key, 'fips-186-3')
>>> signature = signer.sign(hash_obj)
>>>
>>> # Load the public key
>>> f = open("public_key.pem", "r")
>>> hash_obj = SHA256.new(message)
>>> pub_key = DSA.import_key(f.read())
>>> verifier = DSS.new(pub_key, 'fips-186-3')
>>>
>>> # Verify the authenticity of the message
>>> try:
>>> verifier.verify(hash_obj, signature)
>>> print "The message is authentic."
>>> except ValueError:
>>> print "The message is not authentic."

	
Crypto.PublicKey.DSA.generate(bits, randfunc=None, domain=None)

	Generate a new DSA key pair.

The algorithm follows Appendix A.1/A.2 and B.1 of FIPS 186-4 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf],
respectively for domain generation and key pair generation.

	Parameters:

	
	bits (integer) – Key length, or size (in bits) of the DSA modulus p.
It must be 1024, 2048 or 3072.

	randfunc (callable) – Random number generation function; it accepts a single integer N
and return a string of random data N bytes long.
If not specified, Crypto.Random.get_random_bytes() is used.

	domain (tuple) – The DSA domain parameters p, q and g as a list of 3
integers. Size of p and q must comply to FIPS 186-4 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf].
If not specified, the parameters are created anew.

	Returns:

	a new DSA key object

	Return type:

	DsaKey

	Raises:

	ValueError – when bits is too little, too big, or not a multiple of 64.

	
Crypto.PublicKey.DSA.construct(tup, consistency_check=True)

	Construct a DSA key from a tuple of valid DSA components.

	Parameters:

	
	tup (tuple) – A tuple of long integers, with 4 or 5 items
in the following order:

	Public key (y).

	Sub-group generator (g).

	Modulus, finite field order (p).

	Sub-group order (q).

	Private key (x). Optional.

	consistency_check (boolean) – If True, the library will verify that the provided components
fulfil the main DSA properties.

	Raises:

	ValueError – when the key being imported fails the most basic DSA validity checks.

	Returns:

	a DSA key object

	Return type:

	DsaKey

	
class Crypto.PublicKey.DSA.DsaKey(key_dict)

	Class defining an actual DSA key.
Do not instantiate directly.
Use generate(), construct() or import_key() instead.

	Variables:

	
	p (integer) – DSA modulus

	q (integer) – Order of the subgroup

	g (integer) – Generator

	y (integer) – Public key

	x (integer) – Private key

	Undocumented:

	exportKey, publickey

	
domain()

	The DSA domain parameters.

	Returns

	tuple : (p,q,g)

	
exportKey(format='PEM', pkcs8=None, passphrase=None, protection=None, randfunc=None)

	Export this DSA key.

	Parameters:

	
	format (string) – The encoding for the output:

	’PEM’ (default). ASCII as per RFC1421 [http://www.ietf.org/rfc/rfc1421.txt]/ RFC1423 [http://www.ietf.org/rfc/rfc1423.txt].

	’DER’. Binary ASN.1 encoding.

	’OpenSSH’. ASCII one-liner as per RFC4253 [http://www.ietf.org/rfc/rfc4253.txt].
Only suitable for public keys, not for private keys.

	passphrase (string) – Private keys only. The pass phrase to protect the output.

	pkcs8 (boolean) – Private keys only. If True (default), the key is encoded
with PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt]. If False, it is encoded in the custom
OpenSSL/OpenSSH container.

	protection (string) – Only in combination with a pass phrase.
The encryption scheme to use to protect the output.

If pkcs8 takes value True, this is the PKCS#8
algorithm to use for deriving the secret and encrypting
the private DS