

Welcome to PyCryptodome’s documentation

	PyCryptodome

	Features

	Installation
	Compiling in Linux Ubuntu

	Compiling in Linux Fedora

	Windows (from sources)

	Documentation

	PGP verification

	Compatibility with PyCrypto

	API documentation

	Examples
	Encrypt data with AES

	Generate an RSA key

	Generate public key and private key

	Encrypt data with RSA

	Frequently Asked Questions
	Is CTR cipher mode compatible with Java?

	Are RSASSA-PSS signatures compatible with Java?

	Are RSASSA-PSS signatures compatible with OpenSSL?

	Why do I get the error No module named Crypto on Windows?

	Why does strxor raise TypeError: argument 2 must be bytes, not bytearray?

	Why do I get a translation_unit_or_empty undefined error with pycparser?

	Contribute and support

	Future plans

	Changelog
	3.18.0 (18 May 2023)
	New features

	3.17.0 (29 January 2023)
	New features

	Resolved issues

	Other changes

	3.16.0 (26 November 2022)
	New features

	Resolved issues

	3.15.0 (22 June 2022)
	New features

	Resolved issues

	3.14.1 (5 February 2022)
	Resolved issues

	3.14.0 (30 January 2022)
	New features

	3.13.0 (23 January 2022)
	New features

	Resolved issues

	Other changes

	3.12.0 (4 December 2021)
	New features

	Resolved issues

	3.11.0 (8 October 2021)
	Resolved issues

	New features

	3.10.4 (25 September 2021)
	Resolved issues

	3.10.3 (22 September 2021)
	Resolved issues

	New features

	Other changes

	3.10.1 (9 February 2021)
	Other changes

	3.10.0 (6 February 2021)
	Resolved issues

	Other changes

	Breaks in compatibility

	3.9.9 (2 November 2020)
	Resolved issues

	New features

	3.9.8 (23 June 2020)
	Resolved issues

	New features

	3.9.7 (20 February 2020)
	Resolved issues

	3.9.6 (2 February 2020)
	Resolved issues

	3.9.5 (1 February 2020)
	Resolved issues

	New features

	3.9.4 (18 November 2019)
	Resolved issues

	3.9.3 (12 November 2019)
	Resolved issues

	3.9.2 (10 November 2019)
	New features

	Resolved issues

	3.9.1 (1 November 2019)
	New features

	Resolved issues

	3.9.0 (27 August 2019)
	New features

	Resolved issues

	3.8.2 (30 May 2019)
	Resolved issues

	3.8.1 (4 April 2019)
	New features

	Resolved issues

	3.8.0 (23 March 2019)
	New features

	Resolved issues

	Breaks in compatibility

	3.7.3 (19 January 2019)
	Resolved issues

	3.7.2 (26 November 2018)
	Resolved issues

	3.7.1 (25 November 2018)
	New features

	Resolved issues

	3.7.0 (27 October 2018)
	New features

	Resolved issues

	Breaks in compatibility

	3.6.6 (17 August 2018)
	Resolved issues

	3.6.5 (12 August 2018)
	Resolved issues

	3.6.4 (10 July 2018)
	New features

	Resolved issues

	3.6.3 (21 June 2018)
	Resolved issues

	3.6.2 (19 June 2018)
	New features

	Resolved issues

	Breaks in compatibility

	3.6.1 (15 April 2018)
	New features

	Resolved issues

	3.6.0 (8 April 2018)
	New features

	Resolved issues

	3.5.1 (8 March 2018)
	Resolved issues

	3.5.0 (7 March 2018)
	New features

	Resolved issues

	Breaks in compatibility

	3.4.12 (5 February 2018)
	Resolved issues

	3.4.11 (5 February 2018)
	Resolved issues

	3.4.10 (2 February 2018)
	Resolved issues

	3.4.9 (1 February 2018)
	New features

	Resolved issues

	3.4.8 (27 January 2018)
	New features

	Resolved issues

	3.4.7 (26 August 2017)
	New features

	Resolved issues

	3.4.6 (18 May 2017)
	Resolved issues

	3.4.5 (6 February 2017)
	Resolved issues

	3.4.4 (1 February 2017)
	Resolved issues

	3.4.3 (17 October 2016)
	Resolved issues

	3.4.2 (8 March 2016)
	Resolved issues

	3.4.1 (21 February 2016)
	New features

	3.4 (7 February 2016)
	New features

	Resolved issues

	Breaks in compatibility

	3.3.1 (1 November 2015)
	New features

	Resolved issues

	Breaks in compatibility

	3.3 (29 October 2015)
	New features

	Resolved issues

	Breaks in compatibility

	3.2.1 (9 September 2015)
	New features

	3.2 (6 September 2015)
	New features

	Resolved issues

	Breaks in compatibility

	3.1 (15 March 2015)
	New features

	Resolved issues

	Breaks in compatibility

	3.0 (24 June 2014)
	New features

	Resolved issues

	Breaks in compatibility

	Other changes

	License
	Public domain

	BSD license

 [image: ../_images/badge.svg]
 [https://github.com/Legrandin/pycryptodome/actions][image: ../_images/pycryptodome.svg]
 [https://pypi.org/project/pycryptodome][image: ../_images/pycryptodomex.svg]
 [https://pypi.org/project/pycryptodomex]
PyCryptodome

PyCryptodome is a self-contained Python package of low-level
cryptographic primitives.

It supports Python 2.7, Python 3.5 and newer, and PyPy.

The installation procedure depends on the package you want the library to be in.
PyCryptodome can be used as:

	an almost drop-in replacement for the old PyCrypto library.
You install it with:

pip install pycryptodome

In this case, all modules are installed under the Crypto package.

One must avoid having both PyCrypto and PyCryptodome installed
at the same time, as they will interfere with each other.

This option is therefore recommended only when you are sure that
the whole application is deployed in a virtualenv.

	a library independent of the old PyCrypto.
You install it with:

pip install pycryptodomex

In this case, all modules are installed under the Cryptodome package.
PyCrypto and PyCryptodome can coexist.

For faster public key operations in Unix, you should install GMP [https://gmplib.org] in your system.

PyCryptodome is a fork of PyCrypto. It brings the following enhancements
with respect to the last official version of PyCrypto (2.6.1):

	Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB)

	Accelerated AES on Intel platforms via AES-NI

	First class support for PyPy

	Elliptic curves cryptography (NIST P-curves; Ed25519, Ed448)

	Better and more compact API (nonce and iv attributes for ciphers,
automatic generation of random nonces and IVs, simplified CTR cipher mode,
and more)

	SHA-3 hash algorithms (FIPS 202) and derived functions (NIST SP-800 185):

	SHAKE128 and SHA256 XOFs

	cSHAKE128 and cSHAKE256 XOFs

	KMAC128 and KMAC256

	TupleHash128 and TupleHash256

	KangarooTwelve XOF (derived from Keccak)

	Truncated hash algorithms SHA-512/224 and SHA-512/256 (FIPS 180-4)

	BLAKE2b and BLAKE2s hash algorithms

	Salsa20 and ChaCha20/XChaCha20 stream ciphers

	Poly1305 MAC

	ChaCha20-Poly1305 and XChaCha20-Poly1305 authenticated ciphers

	scrypt, bcrypt, HKDF, and NIST SP 800 108r1 Counter Mode key derivation functions

	Deterministic (EC)DSA and EdDSA

	Password-protected PKCS#8 key containers

	Shamir’s Secret Sharing scheme

	Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace)

	Simplified install process, including better support for Windows

	Cleaner RSA and DSA key generation (largely based on FIPS 186-4)

	Major clean ups and simplification of the code base

PyCryptodome is not a wrapper to a separate C library like OpenSSL.
To the largest possible extent, algorithms are implemented in pure Python.
Only the pieces that are extremely critical to performance (e.g. block ciphers)
are implemented as C extensions.

For more information, see the homepage [https://www.pycryptodome.org].

For security issues, please send an email to security@pycryptodome.org.

All the code can be downloaded from GitHub [https://github.com/Legrandin/pycryptodome].

Features

This page lists the low-level primitives that PyCryptodome provides.

You are expected to have a solid understanding of cryptography and security
engineering to successfully use them.

You must also be able to recognize that some primitives are obsolete (e.g. TDES)
or even unsecure (RC4). They are provided only to enable backward compatibility
where required by the applications.

A list of useful resources in that area can be found on Matthew Green’s blog [http://blog.cryptographyengineering.com/p/useful-cryptography-resources.html].

	Symmetric ciphers:

	AES

	Single and Triple DES (legacy)

	CAST-128 (legacy)

	RC2 (legacy)

	Traditional modes of operations for symmetric ciphers:

	ECB

	CBC

	CFB

	OFB

	CTR

	OpenPGP (a variant of CFB, RFC4880)

	Authenticated Encryption:

	CCM (AES only)

	EAX

	GCM (AES only)

	SIV (AES only)

	OCB (AES only)

	ChaCha20-Poly1305

	Stream ciphers:

	Salsa20

	ChaCha20

	RC4 (legacy)

	Cryptographic hashes:

	SHA-1

	SHA-2 hashes (224, 256, 384, 512, 512/224, 512/256)

	SHA-3 hashes (224, 256, 384, 512) and XOFs (SHAKE128, SHAKE256)

	Functions derived from SHA-3 (cSHAKE128, cSHAKE256, TupleHash128, TupleHash256)

	KangarooTwelve (XOF)

	Keccak (original submission to SHA-3)

	BLAKE2b and BLAKE2s

	RIPE-MD160 (legacy)

	MD5 (legacy)

	Message Authentication Codes (MAC):

	HMAC

	CMAC

	KMAC128 and KMAC256

	Poly1305

	Asymmetric key generation:

	RSA

	ECC (NIST P-curves; Ed25519, Ed448)

	DSA

	ElGamal (legacy)

	Export and import format for asymmetric keys:

	PEM (clear and encrypted)

	PKCS#8 (clear and encrypted)

	ASN.1 DER

	Asymmetric ciphers:

	PKCS#1 (RSA)

	RSAES-PKCS1-v1_5

	RSAES-OAEP

	Asymmetric digital signatures:

	PKCS#1 (RSA)

	RSASSA-PKCS1-v1_5

	RSASSA-PSS

	(EC)DSA

	Nonce-based (FIPS 186-3)

	Deterministic (RFC6979)

	EdDSA

	Key derivation:

	PBKDF2

	scrypt

	HKDF

	PBKDF1 (legacy)

	Other cryptographic protocols:

	Shamir Secret Sharing

	Padding

	PKCS#7

	ISO-7816

	X.923

Installation

The installation procedure depends on the package you want the library to be in.
PyCryptodome can be used as:

	An almost drop-in replacement for the old PyCrypto library.
You install it with:

pip install pycryptodome

In this case, all modules are installed under the Crypto package.
You can test everything is right with:

pip install pycryptodome-test-vectors
python -m Crypto.SelfTest

One must avoid having both PyCrypto and PyCryptodome installed
at the same time, as they will interfere with each other.
This option is therefore recommended only when you are sure that
the whole application is deployed in a virtualenv.

	A library independent of the old PyCrypto.
You install it with:

pip install pycryptodomex

You can test everything is right with:

pip install pycryptodome-test-vectors
python -m Cryptodome.SelfTest

In this case, all modules are installed under the Cryptodome package.
The old PyCrypto and PyCryptodome can coexist.

Note

If you intend to run PyCryptodome with Python 2.7 under Windows, you must first install
the Microsoft Visual C++ 2015 Redistributable [https://www.microsoft.com/en-us/download/details.aspx?id=52685].
That is not necessary if you use Python 3.

The procedures below go a bit more in detail, by explaining
how to setup the environment for compiling the C extensions
for each OS, and how to install the GMP library.

Compiling in Linux Ubuntu

Note

If you want to install under the Crypto package, replace
below pycryptodomex with pycryptodome.

For Python 2.x:

$ sudo apt-get install build-essential python-dev
$ pip install pycryptodomex
$ pip install pycryptodome-test-vectors
$ python -m Cryptodome.SelfTest

For Python 3.x:

$ sudo apt-get install build-essential python3-dev
$ pip install pycryptodomex
$ pip install pycryptodome-test-vectors
$ python3 -m Cryptodome.SelfTest

For PyPy:

$ sudo apt-get install build-essential pypy-dev
$ pip install pycryptodomex
$ pip install pycryptodome-test-vectors
$ pypy -m Cryptodome.SelfTest

Compiling in Linux Fedora

Note

If you want to install under the Crypto package, replace
below pycryptodomex with pycryptodome.

For Python 2.x:

$ sudo yum install gcc gmp python-devel
$ pip install pycryptodomex
$ pip install pycryptodome-test-vectors
$ python -m Cryptodome.SelfTest

For Python 3.x:

$ sudo yum install gcc gmp python3-devel
$ pip install pycryptodomex
$ pip install pycryptodome-test-vectors
$ python3 -m Cryptodome.SelfTest

For PyPy:

$ sudo yum install gcc gmp pypy-devel
$ pip install pycryptodomex
$ pip install pycryptodome-test-vectors
$ pypy -m Cryptodome.SelfTest

Windows (from sources)

Note

If you want to install under the Crypto package, replace
below pycryptodomex with pycryptodome. That being the case and if you want to run the test, instead of Cryptodome.SelfTest, run Crypto.SelfTest.

Windows does not come with a C compiler like most Unix systems.
The simplest way to compile the PyCryptodome extensions from
source code is to install the minimum set of Visual Studio
components freely made available by Microsoft.

	[Once only] Download Build Tools for Visual Studio 2019 [https://visualstudio.microsoft.com/downloads/#build-tools-for-visual-studio-2019].
In the installer, select the C++ build tools, the Windows 10 SDK, and the latest version of MSVC v142 x64/x86 build tools.

	Compile and install PyCryptodome:

> pip install pycryptodomex --no-binary :all:

	To make sure everything work fine, run the test suite:

> pip install pycryptodome-test-vectors
> python -m Cryptodome.SelfTest

Documentation

Project documentation is written in reStructuredText and it is stored under Doc/src.
To publish it as HTML files, you need to install sphinx [http://www.sphinx-doc.org/en/stable/] and
use:

> make -C Doc/ html

It will then be available under Doc/_build/html/.

PGP verification

All source packages and wheels on PyPI are cryptographically signed.
They can be verified with the following PGP key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFTXjPgBEADc3j7vnma9MXRshBPPXXenVpthQD6lrF/3XaBT2RptSf/viOD+
tz85du5XVp+r0SYYGeMNJCQ9NsztxblN/lnKgkfWRmSrB+V6QGS+e3bR5d9OIxzN
7haPxBnyRj//hCT/kKis6fa7N9wtwKBBjbaSX+9vpt7Rrt203sKfcChA4iR3EG89
TNQoc/kGGmwk/gyjfU38726v0NOhMKJp2154iQQVZ76hTDk6GkOYHTcPxdkAj4jS
Dd74M9sOtoOlyDLHOLcWNnlWGgZjtz0z0qSyFXRSuOfggTxrepWQgKWXXzgVB4Jo
0bhmXPAV8vkX5BoG6zGkYb47NGGvknax6jCvFYTCp1sOmVtf5UTVKPplFm077tQg
0KZNAvEQrdWRIiQ1cCGCoF2Alex3VmVdefHOhNmyY7xAlzpP0c8z1DsgZgMnytNn
GPusWeqQVijRxenl+lyhbkb9ZLDq7mOkCRXSze9J2+5aLTJbJu3+Wx6BEyNIHP/f
K3E77nXvC0oKaYTbTwEQSBAggAXP+7oQaA0ea2SLO176xJdNfC5lkQEtMMSZI4gN
iSqjUxXW2N5qEHHex1atmTtk4W9tQEw030a0UCxzDJMhD0aWFKq7wOxoCQ1q821R
vxBH4cfGWdL/1FUcuCMSUlc6fhTM9pvMXgjdEXcoiLSTdaHuVLuqmF/E0wARAQAB
tB9MZWdyYW5kaW4gPGhlbGRlcmlqc0BnbWFpbC5jb20+iQI4BBMBAgAiBQJU14z4
AhsDBgsJCAcDAgYVCAIJCgsEFgIDAQIeAQIXgAAKCRDabO+N4RaZEn7IEACpApha
vRwPB+Dv87aEyVmjZ96Nb3mxHdeP2uSmUxAODzoB5oJJ1QL6HRxEVlU8idjdf73H
DX39ZC7izD+oYIve9sNwTbKqJCZaTxlTDdgSF1N57eJOlELAy+SqpHtaMJPk7SfJ
l/iYoUYxByPLZU1wDwZEDNzt9RCGy3bd/vF/AxWjdUJJPh3E4j5hswvIGSf8/Tp3
MDROU1BaNBOd0CLvBHok8/xavwO6Dk/fE4hJhd5uZcEPtd1GJcPq51z2yr7PGUcb
oERsKZyG8cgfd7j8qoTd6jMIW6fBVHdxiMxW6/Z45X/vVciQSzzEl/yjPUW42kyr
Ib6M16YmnDzp8bl4NNFvvR9uWvOdUkep2Bi8s8kBMJ7G9rHHJcdVy/tP1ECS9Bse
hN4v5oJJ4v5mM/MiWRGKykZULWklonpiq6CewYkmXQDMRnjGXhjCWrB6LuSIkIXd
gKvDNpJ8yEhAfmpvA4I3laMoof/tSZ7ZuyLSZGLKl6hoNIB13HCn4dnjNBeaXCWX
pThgeOWxV6u1fhz4CeC1Hc8WOYr8S7G8P10Ji6owOcj/a1QuCW8XDB2omCTXlhFj
zpC9dX8HgmUVnbPNiMjphihbKXoOcunRx4ZvqIa8mnTbI4tHtR0K0tI4MmbpcVOZ
8IFJ0nZJXuZiL57ijLREisPYmHfBHAgmh1j/W7kCDQRU14z4ARAA3QATRgvOSYFh
nJOnIz6PO3G9kXWjJ8wvp3yE1/PwwTc3NbVUSNCW14xgM2Ryhn9NVh8iEGtPGmUP
4vu7rvuLC2rBs1joBTyqf0mDghlZrb5ZjXv5LcG9SA6FdAXRU6T+b1G2ychKkhEh
d/ulLw/TKLds9zHhE+hkAagLQ5jqjcQN0iX5EYaOukiPUGmnd9fOEGi9YMYtRdrH
+3bZxUpsRStLBWJ6auY7Bla8NJOhaWpr5p/ls+mnDWoqf+tXCCps1Da/pfHKYDFc
2VVdyM/VfNny9eaczYpnj5hvIAACWChgGDBwxPh2DGdUfiQi/QqrK96+F7ulqz6V
2exX4CL0cPv5fUpQqSU/0R5WApM9bl2+wljFhoCXlydU9HNn+0GatGzEoo3yrV/m
PXv7d6NdZxyOqgxu/ai/z++F2pWUXSBxZN3Gv28boFKQhmtthTcFudNUtQOchhn8
Pf/ipVISqrsZorTx9Qx4fPScEWjwbh84Uz20bx0sQs1oYcek2YG5RhEdzqJ6W78R
S/dbzlNYMXGdkxB6C63m8oiGvw0hdN/iGVqpNAoldFmjnFqSgKpyPwfLmmdstJ6f
xFZdGPnKexCpHbKr9fg50jZRenIGai79qPIiEtCZHIdpeemSrc7TKRPV3H2aMNfG
L5HTqcyaM2+QrMtHPMoOFzcjkigLimMAEQEAAYkCHwQYAQIACQUCVNeM+AIbDAAK
CRDabO+N4RaZEo7lD/45J6z2wbL8aIudGEL0aY3hfmW3qrUyoHgaw35KsOY9vZwb
cZuJe0RlYptOreH/NrbR5SXODfhd2sxYyyvXBOuZh9i7OOBsrAd5UE01GCvToPwh
7IpMV3GSSAB4P8XyJh20tZqiZOYKhmbf29gUDzqAI6GzUa0U8xidUKpW2zqYGZjp
wk3RI1fS7tyi/0N8B9tIZF48kbvpFDAjF8w7NSCrgRquAL7zJZIG5o5zXJM/ffF3
67Dnz278MbifdM/HJ+Tj0R0Uvvki9Z61nT653SoUgvILQyC72XI+x0+3GQwsE38a
5aJNZ1NBD3/v+gERQxRfhM5iLFLXK0Xe4K2XFM1g0yN4L4bQPbhSCq88g9Dhmygk
XPbBsrK0NKPVnyGyUXM0VpgRbot11hxx02jC3HxS1nlLF+oQdkKFzJAMOU7UbpX/
oO+286J1FmpG+fihIbvp1Quq48immtnzTeLZbYCsG4mrM+ySYd0Er0G8TBdAOTiN
3zMbGX0QOO2fOsJ1d980cVjHn5CbAo8C0A/4/R2cXAfpacbvTiNq5BVk9NKa2dNb
kmnTStP2qILWmm5ASXlWhOjWNmptvsUcK+8T+uQboLioEv19Ob4j5Irs/OpOuP0K
v4woCi9+03HMS42qGSe/igClFO3+gUMZg9PJnTJhuaTbytXhUBgBRUPsS+lQAQ==
=DpoI
-----END PGP PUBLIC KEY BLOCK-----

Compatibility with PyCrypto

PyCryptodome exposes almost the same API as the old PyCrypto [https://www.dlitz.net/software/pycrypto]
so that most applications will run unmodified.
However, a very few breaks in compatibility had to be introduced
for those parts of the API that represented a security hazard or that
were too hard to maintain.

Specifically, for public key cryptography:

	The following methods from public key objects (RSA, DSA, ElGamal) have been
removed:

	sign()

	verify()

	encrypt()

	decrypt()

	blind()

	unblind()

Applications should be updated to use instead:

	Crypto.Cipher.PKCS1_OAEP for encrypting using RSA.

	Crypto.Signature.pkcs1_15 or Crypto.Signature.pss for signing using RSA.

	Crypto.Signature.DSS for signing using DSA.

	Method: generate() for public key modules does not accept the progress_func parameter anymore.

	Ambiguous method size from RSA, DSA and ElGamal key objects have been removed.
Instead, use methods size_in_bytes() and size_in_bits() and check the documentation.

	The 3 public key object types (RSA, DSA, ElGamal) are now unpickable.
You must use the export_key() method of each key object and select a good output format: for private
keys that means a good password-based encryption scheme.

	Removed attribute Crypto.PublicKey.RSA.algorithmIdentifier.

	Removed Crypto.PublicKey.RSA.RSAImplementation (which should have been private in the first place).
Same for Crypto.PublicKey.DSA.DSAImplementation.

For symmetric key cryptography:

	Symmetric ciphers do not have ECB as default mode anymore. ECB is not semantically secure
and it exposes correlation across blocks.
An expression like AES.new(key) will now fail. If ECB is the desired mode,
one has to explicitly use AES.new(key, AES.MODE_ECB).

	Crypto.Cipher.DES3 does not allow keys that degenerate to Single DES.

	Parameter segment_size cannot be 0 for the CFB mode.

	Parameters disabled_shortcut and overflow cannot be passed anymore to Crypto.Util.Counter.new.
Parameter allow_wraparound is ignored (counter block wraparound will always be checked).

	The counter parameter of a CTR mode cipher must be generated via
Crypto.Util.Counter. It cannot be a generic callable anymore.

	Keys for Crypto.Cipher.ARC2, Crypto.Cipher.ARC4 and Crypto.Cipher.Blowfish must be at least 40 bits long (still very weak).

The following packages, modules and functions have been removed:

	Crypto.Random.OSRNG, Crypto.Util.winrandom and Crypto.Random.randpool.
You should use Crypto.Random only.

	Crypto.Cipher.XOR. If you just want to XOR data, use Crypto.Util.strxor.

	Crypto.Hash.new. Use Crypto.Hash.<algorithm>.new() instead.

	Crypto.Protocol.AllOrNothing

	Crypto.Protocol.Chaffing

	Crypto.Util.number.getRandomNumber

	Crypto.pct_warnings

Others:

	Support for any Python version older than 2.6 is dropped.

API documentation

All cryptographic functionalities are organized in sub-packages;
each sub-package is dedicated to solving a specific class of problems.

	Package

	Description

	Crypto.Cipher

	Modules for protecting confidentiality
that is, for encrypting and decrypting data (example: AES).

	Crypto.Signature

	Modules for assuring authenticity,
that is, for creating and verifying digital signatures of messages
(example: PKCS#1 v1.5).

	Crypto.Hash

	Modules for creating cryptographic digests
(example: SHA-256).

	Crypto.PublicKey

	Modules for generating, exporting or importing
public keys (example: RSA or ECC).

	Crypto.Protocol

	Modules for faciliting secure communications
between parties, in most cases by leveraging cryptograpic primitives
from other modules (example: Shamir’s Secret Sharing scheme).

	Crypto.IO

	Modules for dealing with encodings commonly used
for cryptographic data (example: PEM).

	Crypto.Random

	Modules for generating random data.

	Crypto.Util

	General purpose routines (example: XOR for byte
strings).

In certain cases, there is some overlap between these categories.
For instance, authenticity is also provided by Message Authentication Codes,
and some can be built using digests, so they are included in the Crypto.Hash
package (example: HMAC).
Also, cryptographers have over time realized that encryption without
authentication is often of limited value so recent ciphers found in the
Crypto.Cipher package embed it (example: GCM).

PyCryptodome strives to maintain strong backward compatibility with the old
PyCrypto’s API (except for those few cases where that is harmful to security)
so a few modules don’t appear where they should (example: the ASN.1 module
is under Crypto.Util as opposed to Crypto.IO).

Crypto.Cipher package

Introduction

The Crypto.Cipher package contains algorithms for protecting the confidentiality
of data.

There are three types of encryption algorithms:

	Symmetric ciphers: all parties use the same key, for both
decrypting and encrypting data.
Symmetric ciphers are typically very fast and can process
very large amount of data.

	Asymmetric ciphers: senders and receivers use different keys.
Senders encrypt with public keys (non-secret) whereas receivers
decrypt with private keys (secret).
Asymmetric ciphers are typically very slow and can process
only very small payloads. Example: PKCS#1 OAEP (RSA).

	Hybrid ciphers: the two types of ciphers above can be combined
in a construction that inherits the benefits of both.
An asymmetric cipher is used to protect a short-lived
symmetric key,
and a symmetric cipher (under that key) encrypts
the actual message.

API principles

[image: ../../_images/simple_mode.png]

Fig. 1 Generic state diagram for a cipher object

The base API of a cipher is fairly simple:

	You instantiate a cipher object by calling the new()
function from the relevant cipher module (e.g. Crypto.Cipher.AES.new()).
The first parameter is always the cryptographic key;
its length depends on the particular cipher.
You can (and sometimes must) pass additional cipher- or mode-specific parameters
to new() (such as a nonce or a mode of operation).

	For encrypting data, you call the encrypt() method of the cipher
object with the plaintext. The method returns the piece of ciphertext.
Alternatively, with the output parameter you can specify
a pre-allocated buffer for the result.

For most algorithms, you may call encrypt() multiple times
(i.e. once for each piece of plaintext).

	For decrypting data, you call the decrypt() method of the cipher
object with the ciphertext. The method returns the piece of plaintext.
The output parameter can be passed here too.

For most algorithms, you may call decrypt() multiple times
(i.e. once for each piece of ciphertext).

Note

Plaintexts and ciphertexts (input/output) can only be bytes,
bytearray or memoryview.
In Python 3, you cannot pass strings.
In Python 2, you cannot pass Unicode strings.

Often, the sender has to deliver to the receiver other data in addition
to ciphertext alone (e.g. initialization vectors or nonces, MAC tags, etc).

This is a basic example:

>>> from Crypto.Cipher import Salsa20
>>>
>>> key = b'0123456789012345'
>>> cipher = Salsa20.new(key)
>>> ciphertext = cipher.encrypt(b'The secret I want to send.')
>>> ciphertext += cipher.encrypt(b'The second part of the secret.')
>>> print cipher.nonce # A byte string you must send to the receiver too

Symmetric ciphers

There are two types of symmetric ciphers:

	Stream ciphers: the most natural kind of ciphers:
they encrypt data one byte at a time.
See ChaCha20 and XChaCha20 and Salsa20.

	Block ciphers: ciphers that can only operate on a fixed amount
of data. The most important block cipher is AES, which has
a block size of 128 bits (16 bytes).

In general, a block cipher is mostly useful only together with
a mode of operation, which allows one to encrypt
a variable amount of data. Some modes (like CTR) effectively turn
a block cipher into a stream cipher.

The widespread consensus is that ciphers that provide
only confidentiality, without any form of authentication, are undesirable.
Instead, primitives have been defined to integrate symmetric encryption and
authentication (MAC). For instance:

	Modern modes of operation for block ciphers (like GCM).

	Stream ciphers paired with a MAC function, like ChaCha20-Poly1305 and XChaCha20-Poly1305.

Legacy ciphers

A number of ciphers are implemented in this library purely for backward compatibility purposes.
They are deprecated or even fully broken and should not be used in new designs.

	Single DES and Triple DES (block ciphers)

	RC2 (block cipher)

	ARC4 (stream cipher)

	Blowfish (block cipher)

	CAST-128 (block cipher)

	PKCS#1 v1.5 encryption (RSA) (asymmetric cipher)

Classic modes of operation for symmetric block ciphers

A block cipher uses a symmetric key to encrypt data of fixed and very short length
(the block size), such as 16 bytes for AES.
In order to cope with data of arbitrary length, the cipher must be
combined with a mode of operation.

You create a cipher object with the new() function
in the relevant module under Crypto.Cipher:

	the first parameter is always the cryptographic key (a byte string)

	the second parameter is always the constant that selects the desired
mode of operation

Constants for each mode of operation are defined at the module level for each algorithm.
Their name starts with MODE_, for instance Crypto.Cipher.AES.MODE_CBC.
Note that not all ciphers support all modes.

For instance:

>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_CBC)
>>>
>>> # You can now use use cipher to encrypt or decrypt...

The state machine for a cipher configured with a classic mode is:

[image: ../../_images/simple_mode.png]

Fig. 2 Generic state diagram for a cipher object

What follows is a list of classic modes of operation: they all provide confidentiality
but not data integrity (unlike modern AEAD modes, which are described in another section).

ECB mode

Electronic CodeBook [https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29].
The most basic but also the weakest mode of operation.
Each block of plaintext is encrypted independently of any other block.

Warning

The ECB mode should not be used because it is semantically insecure [https://en.wikipedia.org/wiki/Semantic_security].
For one, it exposes correlation between blocks.

The new() function at the module level under Crypto.Cipher instantiates
a new ECB cipher object for the relevant base algorithm.
In the following definition, <algorithm> could be AES:

	
Crypto.Cipher.<algorithm>.new(key, mode)

	Create a new ECB object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_ECB

	Returns

	an ECB cipher object

The method encrypt() (and likewise decrypt()) of an ECB cipher object
expects data to have length multiple of the block size (e.g. 16 bytes for AES).
You might need to use Crypto.Util.Padding to align the plaintext to the right boundary.

CBC mode

Ciphertext Block Chaining [https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_.28CBC.29],
defined in NIST SP 800-38A, section 6.2 [http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf].
It is a mode of operation where each plaintext block
gets XOR-ed with the previous ciphertext block prior to encryption.

The new() function at the module level under Crypto.Cipher instantiates
a new CBC cipher object for the relevant base algorithm.
In the following definition, <algorithm> could be AES:

	
Crypto.Cipher.<algorithm>.new(key, mode, *, iv=None)

	Create a new CBC object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_CBC

	iv (bytes) – the Initialization Vector. A piece of data unpredictable to adversaries.
It is as long as the block size (e.g. 16 bytes for AES).
If not present, the library creates a random IV value.

	Returns

	a CBC cipher object

The method encrypt() (and likewise decrypt()) of a CBC cipher object
expects data to have length multiple of the block size (e.g. 16 bytes for AES).
You might need to use Crypto.Util.Padding to align the plaintext to the right boundary.

A CBC cipher object has a read-only attribute iv, holding the
Initialization Vector (bytes).

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Util.Padding import pad
>>> from Crypto.Random import get_random_bytes
>>>
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_CBC)
>>> ct_bytes = cipher.encrypt(pad(data, AES.block_size))
>>> iv = b64encode(cipher.iv).decode('utf-8')
>>> ct = b64encode(ct_bytes).decode('utf-8')
>>> result = json.dumps({'iv':iv, 'ciphertext':ct})
>>> print(result)
'{"iv": "bWRHdzkzVDFJbWNBY0EwSmQ1UXFuQT09", "ciphertext": "VDdxQVo3TFFCbXIzcGpYa1lJbFFZQT09"}'

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>> from Crypto.Util.Padding import unpad
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> iv = b64decode(b64['iv'])
>>> ct = b64decode(b64['ciphertext'])
>>> cipher = AES.new(key, AES.MODE_CBC, iv)
>>> pt = unpad(cipher.decrypt(ct), AES.block_size)
>>> print("The message was: ", pt)
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

CTR mode

CounTeR mode [https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29],
defined in NIST SP 800-38A, section 6.5 and Appendix B [http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf].
This mode turns the block cipher into a stream cipher.
Each byte of plaintext is XOR-ed with a byte taken from a keystream: the result is the ciphertext.
The keystream is generated by encrypting a sequence of counter blocks with ECB.

[image: ../../_images/ctr_mode.png]

A counter block is exactly as long as the cipher block size (e.g. 16 bytes for AES).
It consists of the concatenation of two pieces:

	a fixed nonce, set at initialization.

	a variable counter, which gets increased by 1 for any subsequent counter block.
The counter is big endian encoded.

The new() function at the module level under Crypto.Cipher instantiates
a new CTR cipher object for the relevant base algorithm.
In the following definition, <algorithm> could be AES:

	
Crypto.Cipher.<algorithm>.new(key, mode, *, nonce=None, initial_value=None, counter=None)

	Create a new CTR object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_CTR

	nonce (bytes) – the value of the fixed nonce.
It must be unique for the combination message/key.
Its length varies from 0 to the block size minus 1.
If not present, the library creates a random nonce of length equal to block size/2.

	initial_value (integer or bytes) – the value of the counter for the first counter block.
It can be either an integer or bytes (which is the same integer, just big endian encoded).
If not specified, the counter starts at 0.

	counter – a custom counter object created with Crypto.Util.Counter.new().
This allows the definition of a more complex counter block.

	Returns

	a CTR cipher object

The methods encrypt() and decrypt() of a CTR cipher object
accept data of any length (i.e. padding is not needed).
Both raise an OverflowError exception as soon as the counter wraps around to repeat the original value.

The CTR cipher object has a read-only attribute nonce (bytes).

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_CTR)
>>> ct_bytes = cipher.encrypt(data)
>>> nonce = b64encode(cipher.nonce).decode('utf-8')
>>> ct = b64encode(ct_bytes).decode('utf-8')
>>> result = json.dumps({'nonce':nonce, 'ciphertext':ct})
>>> print(result)
{"nonce": "XqP8WbylRt0=", "ciphertext": "Mie5lqje"}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> nonce = b64decode(b64['nonce'])
>>> ct = b64decode(b64['ciphertext'])
>>> cipher = AES.new(key, AES.MODE_CTR, nonce=nonce)
>>> pt = cipher.decrypt(ct)
>>> print("The message was: ", pt)
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

CFB mode

Cipher FeedBack [https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29],
defined in NIST SP 800-38A, section 6.3 [http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf].
It is a mode of operation which turns the block cipher into a stream cipher.
Each byte of plaintext is XOR-ed with a byte taken from a keystream: the result is the ciphertext.

The keystream is obtained on a per-segment basis: the plaintext is broken up in
segments (from 1 byte up to the size of a block). Then, for each segment,
the keystream is obtained by encrypting with the block cipher the last piece of
ciphertext produced so far - possibly backfilled with the Initialization Vector,
if not enough ciphertext is available yet.

The new() function at the module level under Crypto.Cipher instantiates
a new CFB cipher object for the relevant base algorithm.
In the following definition, <algorithm> could be AES:

	
Crypto.Cipher.<algorithm>.new(key, mode, *, iv=None, segment_size=8)

	Create a new CFB object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_CFB

	iv (bytes) – the Initialization Vector.
It must be unique for the combination message/key.
It is as long as the block size (e.g. 16 bytes for AES).
If not present, the library creates a random IV.

	segment_size (integer) – the number of bits (not bytes!) the plaintext and the
ciphertext are segmented in (default if not specified: 8 bits = 1 byte).

	Returns

	a CFB cipher object

The methods encrypt() and decrypt() of a CFB cipher object
accept data of any length (i.e. padding is not needed).

The CFB cipher object has a read-only attribute iv (bytes), holding
the Initialization Vector.

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_CFB)
>>> ct_bytes = cipher.encrypt(data)
>>> iv = b64encode(cipher.iv).decode('utf-8')
>>> ct = b64encode(ct_bytes).decode('utf-8')
>>> result = json.dumps({'iv':iv, 'ciphertext':ct})
>>> print(result)
{"iv": "VoamO23kFSOZcK1O2WiCDQ==", "ciphertext": "f8jciJ8/"}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> iv = b64decode(b64['iv'])
>>> ct = b64decode(b64['ciphertext'])
>>> cipher = AES.new(key, AES.MODE_CFB, iv=iv)
>>> pt = cipher.decrypt(ct)
>>> print("The message was: ", pt)
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

OFB mode

Output FeedBack [https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_.28OFB.29],
defined in NIST SP 800-38A, section 6.4 [http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf].
It is another mode that leads to a stream cipher.
Each byte of plaintext is XOR-ed with a byte taken from a keystream: the result is the ciphertext.
The keystream is obtained by recursively encrypting the Initialization Vector.

The new() function at the module level under Crypto.Cipher instantiates
a new OFB cipher object for the relevant base algorithm.
In the following definition, <algorithm> could be AES:

	
Crypto.Cipher.<algorithm>.new(key, mode, *, iv=None)

	Create a new OFB object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_OFB

	iv (bytes) – the Initialization Vector.
It must be unique for the combination message/key.
It is as long as the block size (e.g. 16 bytes for AES).
If not present, the library creates a random IV.

	Returns

	an OFB cipher object

The methods encrypt() and decrypt() of an OFB cipher object
accept data of any length (i.e. padding is not needed).

The OFB cipher object has a read-only attribute iv (bytes), holding
the Initialization Vector.

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_OFB)
>>> ct_bytes = cipher.encrypt(data)
>>> iv = b64encode(cipher.iv).decode('utf-8')
>>> ct = b64encode(ct_bytes).decode('utf-8')
>>> result = json.dumps({'iv':iv, 'ciphertext':ct})
>>> print(result)
{"iv": "NUuRJbL0UMp8+UMCk2/vQA==", "ciphertext": "XGVGc1Gw"}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> iv = b64decode(b64['iv'])
>>> ct = b64decode(b64['ciphertext'])
>>> cipher = AES.new(key, AES.MODE_OFB, iv=iv)
>>> pt = cipher.decrypt(ct)
>>> print("The message was: ", pt)
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

OpenPGP mode

Constant: Crypto.Cipher.<cipher>.MODE_OPENPGP.

OpenPGP (defined in RFC4880 [https://tools.ietf.org/html/rfc4880]).
A variant of CFB, with two differences:

	The first invocation to the encrypt() method
returns the encrypted IV concatenated to the first chunk
of ciphertext (as opposed to the ciphertext only).
The encrypted IV is as long as the block size plus 2 more bytes.

	When the cipher object is intended for decryption,
the parameter iv to new() is the encrypted IV
(and not the IV, which is still the case for encryption).

Like for CTR, an OpenPGP cipher object has a read-only attribute iv.

Modern modes of operation for symmetric block ciphers

Classic modes of operation such as CBC only provide guarantees over
the confidentiality of the message but not over its integrity.
In other words, they don’t allow the receiver to establish if the
ciphertext was modified in transit or if it really originates
from a certain source.

For that reason, classic modes of operation have been often paired with
a MAC primitive (such as Crypto.Hash.HMAC), but the
combination is not always straightforward, efficient or secure.

Recently, new modes of operations (AEAD, for Authenticated Encryption
with Associated Data [https://en.wikipedia.org/wiki/Authenticated_encryption])
have been designed to combine encryption and authentication into a single,
efficient primitive. Optionally, some part of the message can also be left in the
clear (non-confidential associated data, such as headers),
while the whole message remains fully authenticated.

In addition to the ciphertext and a nonce (or IV - Initialization
Vector), AEAD modes require the additional delivery of a MAC tag.

This is the state machine for a cipher object:

[image: ../../_images/aead.png]

Fig. 3 Generic state diagram for a AEAD cipher mode

Beside the usual encrypt() and decrypt() already
available for classic modes of operation, several other methods are present:

	
update(data)

	Authenticate those parts of the message that get delivered as is,
without any encryption (like headers).
It is similar to the update() method of a MAC object.
Note that all data passed to encrypt() and decrypt() get
automatically authenticated already.

	Parameters

	data (bytes) – the extra data to authenticate

	
digest()

	Create the final authentication tag (MAC tag) for a message.

	Return bytes

	the MAC tag

	
hexdigest()

	Equivalent to digest(), with the output encoded in hexadecimal.

	Return str

	the MAC tag as a hexadecimal string

	
verify(mac_tag)

	Check if the provided authentication tag (MAC tag) is valid, that is, if the message
has been decrypted using the right key and if no modification has taken
place in transit.

	Parameters

	mac_tag (bytes) – the MAC tag

	Raises

	ValueError – if the MAC tag is not valid, that is, if the entire message
should not be trusted.

	
hexverify(mac_tag_hex)

	Same as verify() but accepts the MAC tag encoded as an hexadecimal
string.

	Parameters

	mac_tag_hex (str) – the MAC tag as a hexadecimal string

	Raises

	ValueError – if the MAC tag is not valid, that is, if the entire message
should not be trusted.

	
encrypt_and_digest(plaintext, output=None)

	Perform encrypt() and digest() in one go.

	Parameters

	plaintext (bytes) – the last piece of plaintext to encrypt

	Keyword Arguments

	output (bytes/bytearray/memoryview) – the pre-allocated buffer
where the ciphertext must be stored (as opposed to being returned).

	Returns

	a tuple with two items

	the ciphertext, as bytes

	the MAC tag, as bytes

The first item becomes None when the output parameter
specified a location for the result.

	
decrypt_and_verify(ciphertext, mac_tag, output=None)

	Perform decrypt() and verify() in one go.

	Parameters

	ciphertext (bytes) – the last piece of ciphertext to decrypt

	Keyword Arguments

	output (bytes/bytearray/memoryview) – the pre-allocated buffer
where the plaintext must be stored (as opposed to being returned).

	Raises

	ValueError – if the MAC tag is not valid, that is, if the entire message
should not be trusted.

CCM mode

Counter with CBC-MAC [https://en.wikipedia.org/wiki/CCM_mode], defined in
RFC3610 [https://tools.ietf.org/html/rfc3610] or
NIST SP 800-38C [http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C.pdf].
It only works with ciphers having block size 128 bits (like AES).

The new() function at the module level under Crypto.Cipher instantiates
a new CCM cipher object for the relevant base algorithm.
In the following definition, <algorithm> can only be AES today:

	
Crypto.Cipher.<algorithm>.new(key, mode, *, nonce=None, mac_len=None, msg_len=None, assoc_len=None)

	Create a new CCM object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_CCM

	nonce (bytes) – the value of the fixed nonce.
It must be unique for the combination message/key.
For AES, its length varies from 7 to 13 bytes.
The longer the nonce, the smaller the allowed message size
(with a nonce of 13 bytes, the message cannot exceed 64KB).
If not present, the library creates a 11 bytes random nonce (the maximum
message size is 8GB).

	mac_len (integer) – the desired length of the
MAC tag (default if not present: 16 bytes).

	msg_len (integer) – pre-declaration of the length of the
message to encipher. If not specified, encrypt() and decrypt()
can only be called once.

	assoc_len (integer) – pre-declaration of the length of the
associated data. If not specified, some extra buffering will take place
internally.

	Returns

	a CTR cipher object

The cipher object has a read-only attribute nonce.

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b"header"
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_CCM)
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(data)
>>>
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> json_v = [b64encode(x).decode('utf-8') for x in (cipher.nonce, header, ciphertext, tag)]
>>> result = json.dumps(dict(zip(json_k, json_v)))
>>> print(result)
{"nonce": "p6ffzcKw+6xopVQ=", "header": "aGVhZGVy", "ciphertext": "860kZo/G", "tag": "Ck5YpVCM6fdWnFkFxw8K6A=="}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in json_k}
>>>
>>> cipher = AES.new(key, AES.MODE_CCM, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
>>> print("The message was: " + plaintext.decode('utf-8'))
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

EAX mode

An AEAD mode designed for NIST by
Bellare, Rogaway, and Wagner in 2003 [http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax/eax-spec.pdf].

The new() function at the module level under Crypto.Cipher instantiates
a new EAX cipher object for the relevant base algorithm.

	
Crypto.Cipher.<algorithm>.new(key, mode, *, nonce=None, mac_len=None)

	Create a new EAX object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_EAX

	nonce (bytes) – the value of the fixed nonce.
It must be unique for the combination message/key.
If not present, the library creates a random nonce (16 bytes long for AES).

	mac_len (integer) – the length of the MAC tag, in bytes.
At least 2, and not larger than the cipher’s block size (default),
which is 16 bytes for AES.

	Returns

	an EAX cipher object

The cipher object has a read-only attribute nonce.

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b"header"
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_EAX)
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(data)
>>>
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> json_v = [b64encode(x).decode('utf-8') for x in (cipher.nonce, header, ciphertext, tag)]
>>> result = json.dumps(dict(zip(json_k, json_v)))
>>> print(result)
{"nonce": "CSIJ+e8KP7HJo+hC4RXIyQ==", "header": "aGVhZGVy", "ciphertext": "9YYjuAn6", "tag": "kXHrs9ZwYmjDkmfEJx7Clg=="}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in json_k}
>>>
>>> cipher = AES.new(key, AES.MODE_EAX, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
>>> print("The message was: " + plaintext.decode('utf-8'))
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

GCM mode

Galois/Counter Mode [https://en.wikipedia.org/wiki/Galois/Counter_Mode],
defined in NIST SP 800-38D [http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf].
It only works in combination with a 128 bits cipher like AES.

The new() function at the module level under Crypto.Cipher instantiates
a new GCM cipher object for the relevant base algorithm.

	
Crypto.Cipher.<algorithm>.new(key, mode, *, nonce=None, mac_len=None)

	Create a new GCM object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_GCM

	nonce (bytes) – the value of the fixed nonce.
It must be unique for the combination message/key.
If not present, the library creates a random nonce (16 bytes long for AES).

	mac_len (integer) – the desired length of the
MAC tag, from 4 to 16 bytes (default: 16).

	Returns

	a GCM cipher object

The cipher object has a read-only attribute nonce.

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b"header"
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_GCM)
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(data)
>>>
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> json_v = [b64encode(x).decode('utf-8') for x in (cipher.nonce, header, ciphertext, tag)]
>>> result = json.dumps(dict(zip(json_k, json_v)))
>>> print(result)
{"nonce": "DpOK8NIOuSOQlTq+BphKWw==", "header": "aGVhZGVy", "ciphertext": "CZVqyacc", "tag": "B2tBgICbyw+Wji9KpLVa8w=="}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>> from Crypto.Util.Padding import unpad
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in json_k}
>>>
>>> cipher = AES.new(key, AES.MODE_GCM, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
>>> print("The message was: " + plaintext.decode('utf-8'))
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

Note

GCM is most commonly used with 96-bit (12-byte) nonces, which is also the length recommended by NIST SP 800-38D.

If interoperability is important, one should take into account that the library default
of a 128-bit random nonce may not be (easily) supported by other implementations.
A 96-bit nonce can be explicitly generated for a new encryption cipher:

>>> key = get_random_bytes(16)
>>> nonce = get_random_bytes(12)
>>> cipher = AES.new(key, AES.MODE_GCM, nonce=nonce)

SIV mode

Synthetic Initialization Vector (SIV), defined in RFC5297 [https://tools.ietf.org/html/rfc5297].
It only works with ciphers with a block size of 128 bits (like AES).

Although less efficient than other modes, SIV is nonce misuse-resistant:
accidental reuse of the nonce does not jeopardize the security as it happens with CCM or GCM.
As a matter of fact, operating without a nonce is not an error per se: the cipher
simply becomes deterministic. In other words, a message gets always encrypted into
the same ciphertext.

The new() function at the module level under Crypto.Cipher instantiates
a new SIV cipher object for the relevant base algorithm.

	
Crypto.Cipher.<algorithm>.new(key, mode, *, nonce=None)

	Create a new SIV object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key; it must be twice the size of the key
required by the underlying cipher (e.g. 32 bytes for
AES-128).

	mode – the constant Crypto.Cipher.<algorithm>.MODE_SIV

	nonce (bytes) – the value of the fixed nonce.
It must be unique for the combination message/key.
If not present, the encryption will be deterministic.

	Returns

	a SIV cipher object

If the nonce parameter was provided to new(), the resulting cipher object has a read-only attribute nonce.

Example (encryption):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b"header"
>>> data = b"secret"
>>> key = get_random_bytes(16 * 2)
>>> nonce = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_SIV, nonce=nonce) # Without nonce, the encryption
>>> # becomes deterministic
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(data)
>>>
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> json_v = [b64encode(x).decode('utf-8') for x in (nonce, header, ciphertext, tag)]
>>> result = json.dumps(dict(zip(json_k, json_v)))
>>> print(result)
{"nonce": "zMiifAVvDpMS8hnGK/z+iw==", "header": "aGVhZGVy", "ciphertext": "Q7lReEAF", "tag": "KgdnBVbCee6B/wGmMf/wQA=="}

Example (decryption):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in json_k}
>>>
>>> cipher = AES.new(key, AES.MODE_SIV, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
>>> print("The message was: " + plaintext.decode('utf-8'))
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

One side-effect is that encryption (or decryption) must take place in one go
with the method encrypt_and_digest() (or decrypt_and_verify()).
You cannot use encrypt() or decrypt(). The state diagram is therefore:

[image: ../../_images/siv.png]

Fig. 4 State diagram for the SIV cipher mode

The length of the key passed to new() must be twice
as required by the underlying block cipher (e.g. 32 bytes for AES-128).

Each call to the method update() consumes an full piece of associated data.
That is, the sequence:

>>> siv_cipher.update(b"builtin")
>>> siv_cipher.update(b"securely")

is not equivalent to:

>>> siv_cipher.update(b"built")
>>> siv_cipher.update(b"insecurely")

OCB mode

Offset CodeBook mode [https://en.wikipedia.org/wiki/OCB_mode],
a cipher designed by Rogaway and specified in RFC7253 [http://www.rfc-editor.org/info/rfc7253]
(more specifically, this module implements the last variant, OCB3).
It only works in combination with a 128 bits cipher like AES.

OCB was patented in USA but the author eventually abandoned the patents [https://mailarchive.ietf.org/arch/msg/cfrg/qLTveWOdTJcLn4HP3ev-vrj05Vg/].

The new() function at the module level under Crypto.Cipher instantiates
a new OCB cipher object for the relevant base algorithm.

Note

The OCB state machine is slightly different compared to other modes:
if you encrypt (or decrypt) multiple chunks,
at the end you MUST call the method encrypt (or decrypt) with no parameters.
This last call will return any piece of internally cached ciphertext (or plaintext).

[image: ../../_images/ocb_mode.png]

Fig. 5 State diagram for the OCB mode

	
Crypto.Cipher.<algorithm>.new(key, mode, *, nonce=None, mac_len=None)

	Create a new OCB object, using <algorithm> as the base block cipher.

	Parameters

	
	key (bytes) – the cryptographic key

	mode – the constant Crypto.Cipher.<algorithm>.MODE_OCB

	nonce (bytes) – the value of the fixed nonce,
wuth length between 1 and 15 bytes.
It must be unique for the combination message/key.
If not present, the library creates a 15 bytes random nonce.

	mac_len (integer) – the desired length of the
MAC tag (default if not present: 16 bytes).

	Returns

	an OCB cipher object

The cipher object has two read-only attributes: nonce and block_size.

Example (encryption as a once-off operation):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b"header"
>>> data = b"secret"
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_OCB)
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(data)
>>>
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> json_v = [b64encode(x).decode('utf-8') for x in (cipher.nonce, header, ciphertext, tag)]
>>> result = json.dumps(dict(zip(json_k, json_v)))
>>> print(result)
{"nonce": "I7E6PKxHNYo2i9sz8W98", "header": "aGVhZGVy", "ciphertext": "nYJnJ8jC", "tag": "0UbFcmO9lqGknCIDWRLALA=="}

Example (decryption as a once-off operation):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in json_k}
>>>
>>> cipher = AES.new(key, AES.MODE_OCB, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
>>> print("The message was: " + plaintext.decode('utf-8'))
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

Example (encryption with multiple chunks):

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b'header'
>>> data = [b'chunk1', b'chunk2', b'chunk3']
>>> key = get_random_bytes(16)
>>> cipher = AES.new(key, AES.MODE_OCB)
>>> cipher.update(header)
>>> ciphertext = b''
>>> for chunk in data:
>>> ciphertext += cipher.encrypt(chunk)
>>> ciphertext += cipher.encrypt()
>>> tag = cipher.digest()
>>>
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> json_v = [b64encode(x).decode('utf-8') for x in (cipher.nonce, header, ciphertext, tag)]
>>> result = json.dumps(dict(zip(json_k, json_v)))
>>> print(result)
{"nonce": "IABQ/ww8vGsu7F4sbHXK", "header": "aGVhZGVy", "ciphertext": "7Amm2DoiMHVkYC8dY7NEX86M", "tag": "qOPnjAxF63MOAx6xjwRvJQ=="}

Example (decryption with multiple chunks):

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import AES
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> json_k = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in json_k}
>>>
>>> cipher = AES.new(key, AES.MODE_OCB, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> ciphertext = jv['ciphertext']
>>>
>>> # Split into small chunks, just for demo purposes
>>> chunks = [ciphertext[i:i+2] for i in range(0, len(ciphertext), 2)]
>>>
>>> plaintext = b''
>>> for chunk in chunks:
>>> plaintext += cipher.decrypt(chunk)
>>> plaintext += cipher.decrypt()
>>> cipher.verify(jv['tag'])
>>>
>>> print("The message was: " + plaintext.decode('utf-8'))
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

Crypto.Signature package

The Crypto.Signature package contains algorithms for performing digital
signatures, used to guarantee integrity and non-repudiation.

Digital signatures are based on public key cryptography: the party that signs a
message holds the private key, the one that verifies the signature holds the
public key.

Signing a message

	Instantiate a new signer object for the desired algorithm,
for instance with Crypto.Signature.pkcs1_15.new().
The first parameter is the key object (private key)
obtained via the Crypto.PublicKey module.

	Instantiate a cryptographic hash object, for instance with Crypto.Hash.SHA384.new().
Then, process the message with its update() method.

	Invoke the sign() method on the signer with the hash object as parameter.
The output is the signature of the message (a byte string).

Verifying a signature

	Instantiate a new verifier object for the desired algorithm,
for instance with Crypto.Signature.pkcs1_15.new().
The first parameter is the key object (public key)
obtained via the Crypto.PublicKey module.

	Instantiate a cryptographic hash object, for instance with Crypto.Hash.SHA384.new().
Then, process the message with its update() method.

	Invoke the verify() method on the verifier, with the hash object and the incoming signature as parameters.
If the message is not authentic, an ValueError is raised.

Available mechanisms

	PKCS#1 v1.5 (RSA)

	PKCS#1 PSS (RSA)

	Edwards-curve Digital Signature Algorithm (EdDSA)

	Digital Signature Algorithm (DSA and ECDSA)

Crypto.Hash package

Cryptographic hash functions take arbitrary binary strings as input,
and produce a random-like fixed-length output (called digest or hash value).

It is practically infeasible to derive the original input data
from the digest. In other words, the cryptographic hash function is one-way
(pre-image resistance).

Given the digest of one message, it is also practically infeasible
to find another message (second pre-image) with the same digest
(weak collision resistance).

Finally, it is infeasible to find two arbitrary messages with the
same digest (strong collision resistance).

Regardless of the hash algorithm, an n bits long digest is at most
as secure as a symmetric encryption algorithm keyed with n/2 bits
(birthday attack [https://en.wikipedia.org/wiki/Birthday_attack]).

Hash functions can be simply used as integrity checks. In
combination with a public-key algorithm, you can implement a
digital signature.

API principles

[image: ../../_images/hashing.png]

Fig. 6 Generic state diagram for a hash object

Every time you want to hash a message, you have to create a new hash object
with the new() function in the relevant algorithm module (e.g.
Crypto.Hash.SHA256.new()).

A first piece of message to hash can be passed to new() with the data parameter:

>> from Crypto.Hash import SHA256
>>
>> hash_object = SHA256.new(data=b'First')

Note

You can only hash byte strings or byte arrays (no Python 2 Unicode strings
or Python 3 strings).

Afterwards, the method update() can be invoked any number of times
as necessary, with other pieces of message:

>>> hash_object.update(b'Second')
>>> hash_object.update(b'Third')

The two steps above are equivalent to:

>>> hash_object.update(b'SecondThird')

At the end, the digest can be retrieved with the methods digest() or
hexdigest():

>>> print(hash_object.digest())
b'}\x96\xfd@\xb2$?O\xca\xc1a\x10\x15\x8c\x94\xe4\xb4\x085"\xd5"\xa8\xa4C\x9e+\x00\x859\xc7A'
>>> print(hash_object.hexdigest())
7d96fd40b2243f4fcac16110158c94e4b4083522d522a8a4439e2b008539c741

Attributes of hash objects

Every hash object has the following attributes:

	Attribute

	Description

	digest_size

	Size of the digest in bytes, that is, the output
of the digest() method.
It does not exist for hash functions with variable digest output
(such as Crypto.Hash.SHAKE128).
This is also a module attribute.

	block_size

	The size of the message block in bytes, input to the compression
function. Only applicable for algorithms based on the Merkle-Damgard
construction (e.g. Crypto.Hash.SHA256).
This is also a module attribute.

	oid

	A string with the dotted representation of the ASN.1 OID
assigned to the hash algorithm.

Modern hash algorithms

	SHA-2 family (FIPS 180-4)

	SHA-224

	SHA-256

	SHA-384

	SHA-512, SHA-512/224, SHA-512/256

	SHA-3 family (FIPS 202)

	SHA3-224

	SHA3-256

	SHA3-384

	SHA3-512

	TupleHash128

	TupleHash256

	BLAKE2

	BLAKE2s

	BLAKE2b

Extensible-Output Functions (XOF)

A XOF is similar to a conventional cryptographic hash: it is
a one-way function that maps a piece of data of arbitrary size to
a random-like output. It provides some guarantees over
collision resistance, pre-image resistance, and second pre-image resistance.

Unlike a conventional hash, an application using a XOF can choose the length of the output.
For this reason, a XOF does not have a digest() method.
Instead, it has a read(N) method to extract the next N bytes of the output.

[image: ../../_images/xof.png]

Fig. 7 Generic state diagram for a XOF object

	SHA-3 family (FIPS 202)

	SHAKE128

	SHAKE256

	SHA-3 derived functions (NIST SP 800-185)

	cSHAKE128

	cSHAKE256

	KangarooTwelve

Message Authentication Code (MAC) algorithms

	HMAC

	CMAC

	Poly1305

	SHA-3 derived functions (NIST SP 800-185)

	KMAC128

	KMAC256

Historic hash algorithms

The following algorithms should not be used in new designs:

	SHA-1

	MD2

	MD5

	RIPEMD-160

	Keccak

Crypto.PublicKey package

In a public key cryptography system, senders and receivers do not use the same key.
Instead, the system defines a key pair, with one of the keys being
confidential (private) and the other not (public).

	Algorithm

	Sender uses..

	Receiver uses…

	Encryption

	Public key

	Private key

	Signature

	Private key

	Public key

Unlike keys meant for symmetric cipher algorithms (typically just
random bit strings), keys for public key algorithms have very specific
properties. This module collects all methods to generate, validate,
store and retrieve public keys.

API principles

Asymmetric keys are represented by Python objects. Each object can be either
a private key or a public key (the method has_private() can be used
to distinguish them).

A key object can be created in four ways:

	generate() at the module level (e.g. Crypto.PublicKey.RSA.generate()).
The key is randomly created each time.

	import_key() at the module level (e.g. Crypto.PublicKey.RSA.import_key()).
The key is loaded from memory.

	construct() at the module level (e.g. Crypto.PublicKey.RSA.construct()).
The key will be built from a set of sub-components.

	publickey() at the object level (e.g. Crypto.PublicKey.RSA.RsaKey.publickey()).
The key will be the public key matching the given object.

A key object can be serialized via its export_key() method.

Keys objects can be compared via the usual operators == and != (note that the two halves of the same key,
private and public, are considered as two different keys).

Available key types

	RSA keys

	DSA keys

	Elliptic Curve keys

Obsolete key type

	ElGamal keys

RSA

RSA [http://en.wikipedia.org/wiki/RSA_%28algorithm%29] is the most widespread and used public key algorithm. Its security is
based on the difficulty of factoring large integers. The algorithm has
withstood attacks for more than 30 years, and it is therefore considered
reasonably secure for new designs.

The algorithm can be used for both confidentiality (encryption) and
authentication (digital signature). It is worth noting that signing and
decryption are significantly slower than verification and encryption.

The cryptographic strength is primarily linked to the length of the RSA modulus n.
In 2017, a sufficient length is deemed to be 2048 bits. For more information,
see the most recent ECRYPT [http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf] report.

Both RSA ciphertexts and RSA signatures are as large as the RSA modulus n (256
bytes if n is 2048 bit long).

The module Crypto.PublicKey.RSA provides facilities for generating new RSA keys,
reconstructing them from known components, exporting them, and importing them.

As an example, this is how you generate a new RSA key pair, save it in a file
called mykey.pem, and then read it back:

>>> from Crypto.PublicKey import RSA
>>>
>>> key = RSA.generate(2048)
>>> f = open('mykey.pem','wb')
>>> f.write(key.export_key('PEM'))
>>> f.close()
...
>>> f = open('mykey.pem','r')
>>> key = RSA.import_key(f.read())

	
Crypto.PublicKey.RSA.generate(bits, randfunc=None, e=65537)

	Create a new RSA key pair.

The algorithm closely follows NIST FIPS 186-4 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf] in its
sections B.3.1 and B.3.3. The modulus is the product of
two non-strong probable primes.
Each prime passes a suitable number of Miller-Rabin tests
with random bases and a single Lucas test.

	Parameters

	
	bits (integer) – Key length, or size (in bits) of the RSA modulus.
It must be at least 1024, but 2048 is recommended.
The FIPS standard only defines 1024, 2048 and 3072.

	randfunc (callable) – Function that returns random bytes.
The default is Crypto.Random.get_random_bytes().

	e (integer) – Public RSA exponent. It must be an odd positive integer.
It is typically a small number with very few ones in its
binary representation.
The FIPS standard requires the public exponent to be
at least 65537 (the default).

Returns: an RSA key object (RsaKey, with private key).

	
Crypto.PublicKey.RSA.construct(rsa_components, consistency_check=True)

	Construct an RSA key from a tuple of valid RSA components.

The modulus n must be the product of two primes.
The public exponent e must be odd and larger than 1.

In case of a private key, the following equations must apply:

\[\begin{split}\begin{align}
p*q &= n \\
e*d &\equiv 1 (\text{mod lcm} [(p-1)(q-1)]) \\
p*u &\equiv 1 (\text{mod } q)
\end{align}\end{split}\]

	Parameters

	
	rsa_components (tuple) – A tuple of integers, with at least 2 and no
more than 6 items. The items come in the following order:

	RSA modulus n.

	Public exponent e.

	Private exponent d.
Only required if the key is private.

	First factor of n (p).
Optional, but the other factor q must also be present.

	Second factor of n (q). Optional.

	CRT coefficient q, that is \(p^{-1} \text{mod }q\). Optional.

	consistency_check (boolean) – If True, the library will verify that the provided components
fulfil the main RSA properties.

	Raises

	ValueError – when the key being imported fails the most basic RSA validity checks.

Returns: An RSA key object (RsaKey).

	
Crypto.PublicKey.RSA.import_key(extern_key, passphrase=None)

	Import an RSA key (public or private).

	Parameters

	
	extern_key (string or byte string) – The RSA key to import.

The following formats are supported for an RSA public key:

	X.509 certificate (binary or PEM format)

	X.509 subjectPublicKeyInfo DER SEQUENCE (binary or PEM
encoding)

	PKCS#1 [http://www.ietf.org/rfc/rfc3447.txt] RSAPublicKey DER SEQUENCE (binary or PEM encoding)

	An OpenSSH line (e.g. the content of ~/.ssh/id_ecdsa, ASCII)

The following formats are supported for an RSA private key:

	PKCS#1 RSAPrivateKey DER SEQUENCE (binary or PEM encoding)

	PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt] PrivateKeyInfo or EncryptedPrivateKeyInfo
DER SEQUENCE (binary or PEM encoding)

	OpenSSH (text format, introduced in OpenSSH 6.5 [https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf])

For details about the PEM encoding, see RFC1421 [http://www.ietf.org/rfc/rfc1421.txt]/RFC1423 [http://www.ietf.org/rfc/rfc1423.txt].

	passphrase (string or byte string) – For private keys only, the pass phrase that encrypts the key.

Returns: An RSA key object (RsaKey).

	Raises

	ValueError/IndexError/TypeError – When the given key cannot be parsed (possibly because the pass
phrase is wrong).

	
class Crypto.PublicKey.RSA.RsaKey(**kwargs)

	Class defining an actual RSA key.
Do not instantiate directly.
Use generate(), construct() or import_key() instead.

	Variables

	
	n (integer) – RSA modulus

	e (integer) – RSA public exponent

	d (integer) – RSA private exponent

	p (integer) – First factor of the RSA modulus

	q (integer) – Second factor of the RSA modulus

	invp (integer) – Chinese remainder component (\(p^{-1} \text{mod } q\))

	invq (integer) – Chinese remainder component (\(q^{-1} \text{mod } p\))

	u (integer) – Same as invp

	Undocumented

	exportKey, publickey

	
exportKey(format='PEM', passphrase=None, pkcs=1, protection=None, randfunc=None)

	Export this RSA key.

	Parameters

	
	format (string) – The format to use for wrapping the key:

	’PEM’. (Default) Text encoding, done according to RFC1421 [http://www.ietf.org/rfc/rfc1421.txt]/RFC1423 [http://www.ietf.org/rfc/rfc1423.txt].

	’DER’. Binary encoding.

	’OpenSSH’. Textual encoding, done according to OpenSSH specification.
Only suitable for public keys (not private keys).

	passphrase (string) – (For private keys only) The pass phrase used for protecting the output.

	pkcs (integer) – (For private keys only) The ASN.1 structure to use for
serializing the key. Note that even in case of PEM
encoding, there is an inner ASN.1 DER structure.

With pkcs=1 (default), the private key is encoded in a
simple PKCS#1 [http://www.ietf.org/rfc/rfc3447.txt] structure (RSAPrivateKey).

With pkcs=8, the private key is encoded in a PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt] structure
(PrivateKeyInfo).

Note

This parameter is ignored for a public key.
For DER and PEM, an ASN.1 DER SubjectPublicKeyInfo
structure is always used.

	protection (string) – (For private keys only)
The encryption scheme to use for protecting the private key.

If None (default), the behavior depends on format:

	For ‘DER’, the PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC
scheme is used. The following operations are performed:

	A 16 byte Triple DES key is derived from the passphrase
using Crypto.Protocol.KDF.PBKDF2() with 8 bytes salt,
and 1 000 iterations of Crypto.Hash.HMAC.

	The private key is encrypted using CBC.

	The encrypted key is encoded according to PKCS#8.

	For ‘PEM’, the obsolete PEM encryption scheme is used.
It is based on MD5 for key derivation, and Triple DES for encryption.

Specifying a value for protection is only meaningful for PKCS#8
(that is, pkcs=8) and only if a pass phrase is present too.

The supported schemes for PKCS#8 are listed in the
Crypto.IO.PKCS8 module (see wrap_algo parameter).

	randfunc (callable) – A function that provides random bytes. Only used for PEM encoding.
The default is Crypto.Random.get_random_bytes().

	Returns

	the encoded key

	Return type

	byte string

	Raises

	ValueError – when the format is unknown or when you try to encrypt a private
key with DER format and PKCS#1.

Warning

If you don’t provide a pass phrase, the private key will be
exported in the clear!

	
export_key(format='PEM', passphrase=None, pkcs=1, protection=None, randfunc=None)

	Export this RSA key.

	Parameters

	
	format (string) – The format to use for wrapping the key:

	’PEM’. (Default) Text encoding, done according to RFC1421 [http://www.ietf.org/rfc/rfc1421.txt]/RFC1423 [http://www.ietf.org/rfc/rfc1423.txt].

	’DER’. Binary encoding.

	’OpenSSH’. Textual encoding, done according to OpenSSH specification.
Only suitable for public keys (not private keys).

	passphrase (string) – (For private keys only) The pass phrase used for protecting the output.

	pkcs (integer) – (For private keys only) The ASN.1 structure to use for
serializing the key. Note that even in case of PEM
encoding, there is an inner ASN.1 DER structure.

With pkcs=1 (default), the private key is encoded in a
simple PKCS#1 [http://www.ietf.org/rfc/rfc3447.txt] structure (RSAPrivateKey).

With pkcs=8, the private key is encoded in a PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt] structure
(PrivateKeyInfo).

Note

This parameter is ignored for a public key.
For DER and PEM, an ASN.1 DER SubjectPublicKeyInfo
structure is always used.

	protection (string) – (For private keys only)
The encryption scheme to use for protecting the private key.

If None (default), the behavior depends on format:

	For ‘DER’, the PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC
scheme is used. The following operations are performed:

	A 16 byte Triple DES key is derived from the passphrase
using Crypto.Protocol.KDF.PBKDF2() with 8 bytes salt,
and 1 000 iterations of Crypto.Hash.HMAC.

	The private key is encrypted using CBC.

	The encrypted key is encoded according to PKCS#8.

	For ‘PEM’, the obsolete PEM encryption scheme is used.
It is based on MD5 for key derivation, and Triple DES for encryption.

Specifying a value for protection is only meaningful for PKCS#8
(that is, pkcs=8) and only if a pass phrase is present too.

The supported schemes for PKCS#8 are listed in the
Crypto.IO.PKCS8 module (see wrap_algo parameter).

	randfunc (callable) – A function that provides random bytes. Only used for PEM encoding.
The default is Crypto.Random.get_random_bytes().

	Returns

	the encoded key

	Return type

	byte string

	Raises

	ValueError – when the format is unknown or when you try to encrypt a private
key with DER format and PKCS#1.

Warning

If you don’t provide a pass phrase, the private key will be
exported in the clear!

	
has_private()

	Whether this is an RSA private key

	
public_key()

	A matching RSA public key.

	Returns

	a new RsaKey object

	
publickey()

	A matching RSA public key.

	Returns

	a new RsaKey object

	
size_in_bits()

	Size of the RSA modulus in bits

	
size_in_bytes()

	The minimal amount of bytes that can hold the RSA modulus

	
Crypto.PublicKey.RSA.oid = '1.2.840.113549.1.1.1'

	Object ID [http://www.alvestrand.no/objectid/1.2.840.113549.1.1.1.html] for the RSA encryption algorithm. This OID often indicates
a generic RSA key, even when such key will be actually used for digital
signatures.

DSA

DSA [http://en.wikipedia.org/wiki/Digital_Signature_Algorithm] is a widespread public key signature algorithm. Its security is
based on the discrete logarithm problem (DLP [http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf]). Given a cyclic
group, a generator g, and an element h, it is hard
to find an integer x such that \(g^x = h\). The problem is believed
to be difficult, and it has been proved such (and therefore secure) for
more than 30 years.

The group is actually a sub-group over the integers modulo p, with p prime.
The sub-group order is q, which is prime too; it always holds that (p-1) is a multiple of q.
The cryptographic strength is linked to the magnitude of p and q.
The signer holds a value x (0<x<q-1) as private key, and its public
key (y where \(y=g^x \text{ mod } p\)) is distributed.

In 2017, a sufficient size is deemed to be 2048 bits for p and 256 bits for q.
For more information, see the most recent ECRYPT [http://www.ecrypt.eu.org/documents/D.SPA.17.pdf] report.

The algorithm can only be used for authentication (digital signature).
DSA cannot be used for confidentiality (encryption).

The values (p,q,g) are called domain parameters;
they are not sensitive but must be shared by both parties (the signer and the verifier).
Different signers can share the same domain parameters with no security
concerns.

The DSA signature is twice as big as the size of q (64 bytes if q is 256 bit
long).

This module provides facilities for generating new DSA keys and for constructing
them from known components.

As an example, this is how you generate a new DSA key pair, save the public
key in a file called public_key.pem, sign a message (with
Crypto.Signature.DSS), and verify it:

>>> from Crypto.PublicKey import DSA
>>> from Crypto.Signature import DSS
>>> from Crypto.Hash import SHA256
>>>
>>> # Create a new DSA key
>>> key = DSA.generate(2048)
>>> f = open("public_key.pem", "w")
>>> f.write(key.publickey().export_key())
>>> f.close()
>>>
>>> # Sign a message
>>> message = b"Hello"
>>> hash_obj = SHA256.new(message)
>>> signer = DSS.new(key, 'fips-186-3')
>>> signature = signer.sign(hash_obj)
>>>
>>> # Load the public key
>>> f = open("public_key.pem", "r")
>>> hash_obj = SHA256.new(message)
>>> pub_key = DSA.import_key(f.read())
>>> verifier = DSS.new(pub_key, 'fips-186-3')
>>>
>>> # Verify the authenticity of the message
>>> try:
>>> verifier.verify(hash_obj, signature)
>>> print "The message is authentic."
>>> except ValueError:
>>> print "The message is not authentic."

	
Crypto.PublicKey.DSA.generate(bits, randfunc=None, domain=None)

	Generate a new DSA key pair.

The algorithm follows Appendix A.1/A.2 and B.1 of FIPS 186-4 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf],
respectively for domain generation and key pair generation.

	Parameters

	
	bits (integer) – Key length, or size (in bits) of the DSA modulus p.
It must be 1024, 2048 or 3072.

	randfunc (callable) – Random number generation function; it accepts a single integer N
and return a string of random data N bytes long.
If not specified, Crypto.Random.get_random_bytes() is used.

	domain (tuple) – The DSA domain parameters p, q and g as a list of 3
integers. Size of p and q must comply to FIPS 186-4 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf].
If not specified, the parameters are created anew.

	Returns

	a new DSA key object

	Return type

	DsaKey

	Raises

	ValueError – when bits is too little, too big, or not a multiple of 64.

	
Crypto.PublicKey.DSA.construct(tup, consistency_check=True)

	Construct a DSA key from a tuple of valid DSA components.

	Parameters

	
	tup (tuple) – A tuple of long integers, with 4 or 5 items
in the following order:

	Public key (y).

	Sub-group generator (g).

	Modulus, finite field order (p).

	Sub-group order (q).

	Private key (x). Optional.

	consistency_check (boolean) – If True, the library will verify that the provided components
fulfil the main DSA properties.

	Raises

	ValueError – when the key being imported fails the most basic DSA validity checks.

	Returns

	a DSA key object

	Return type

	DsaKey

	
class Crypto.PublicKey.DSA.DsaKey(key_dict)

	Class defining an actual DSA key.
Do not instantiate directly.
Use generate(), construct() or import_key() instead.

	Variables

	
	p (integer) – DSA modulus

	q (integer) – Order of the subgroup

	g (integer) – Generator

	y (integer) – Public key

	x (integer) – Private key

	Undocumented

	exportKey, publickey

	
domain()

	The DSA domain parameters.

	Returns

	tuple : (p,q,g)

	
exportKey(format='PEM', pkcs8=None, passphrase=None, protection=None, randfunc=None)

	Export this DSA key.

	Parameters

	
	format (string) – The encoding for the output:

	’PEM’ (default). ASCII as per RFC1421 [http://www.ietf.org/rfc/rfc1421.txt]/ RFC1423 [http://www.ietf.org/rfc/rfc1423.txt].

	’DER’. Binary ASN.1 encoding.

	’OpenSSH’. ASCII one-liner as per RFC4253 [http://www.ietf.org/rfc/rfc4253.txt].
Only suitable for public keys, not for private keys.

	passphrase (string) – Private keys only. The pass phrase to protect the output.

	pkcs8 (boolean) – Private keys only. If True (default), the key is encoded
with PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt]. If False, it is encoded in the custom
OpenSSL/OpenSSH container.

	protection (string) – Only in combination with a pass phrase.
The encryption scheme to use to protect the output.

If pkcs8 takes value True, this is the PKCS#8
algorithm to use for deriving the secret and encrypting
the private DSA key.
For a complete list of algorithms, see Crypto.IO.PKCS8.
The default is PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC.

If pkcs8 is False, the obsolete PEM encryption scheme is
used. It is based on MD5 for key derivation, and Triple DES for
encryption. Parameter protection is then ignored.

The combination format='DER' and pkcs8=False is not allowed
if a passphrase is present.

	randfunc (callable) – A function that returns random bytes.
By default it is Crypto.Random.get_random_bytes().

	Returns

	the encoded key

	Return type

	byte string

	Raises

	ValueError – when the format is unknown or when you try to encrypt a private
key with DER format and OpenSSL/OpenSSH.

Warning

If you don’t provide a pass phrase, the private key will be
exported in the clear!

	
export_key(format='PEM', pkcs8=None, passphrase=None, protection=None, randfunc=None)

	Export this DSA key.

	Parameters

	
	format (string) – The encoding for the output:

	’PEM’ (default). ASCII as per RFC1421 [http://www.ietf.org/rfc/rfc1421.txt]/ RFC1423 [http://www.ietf.org/rfc/rfc1423.txt].

	’DER’. Binary ASN.1 encoding.

	’OpenSSH’. ASCII one-liner as per RFC4253 [http://www.ietf.org/rfc/rfc4253.txt].
Only suitable for public keys, not for private keys.

	passphrase (string) – Private keys only. The pass phrase to protect the output.

	pkcs8 (boolean) – Private keys only. If True (default), the key is encoded
with PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt]. If False, it is encoded in the custom
OpenSSL/OpenSSH container.

	protection (string) – Only in combination with a pass phrase.
The encryption scheme to use to protect the output.

If pkcs8 takes value True, this is the PKCS#8
algorithm to use for deriving the secret and encrypting
the private DSA key.
For a complete list of algorithms, see Crypto.IO.PKCS8.
The default is PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC.

If pkcs8 is False, the obsolete PEM encryption scheme is
used. It is based on MD5 for key derivation, and Triple DES for
encryption. Parameter protection is then ignored.

The combination format='DER' and pkcs8=False is not allowed
if a passphrase is present.

	randfunc (callable) – A function that returns random bytes.
By default it is Crypto.Random.get_random_bytes().

	Returns

	the encoded key

	Return type

	byte string

	Raises

	ValueError – when the format is unknown or when you try to encrypt a private
key with DER format and OpenSSL/OpenSSH.

Warning

If you don’t provide a pass phrase, the private key will be
exported in the clear!

	
has_private()

	Whether this is a DSA private key

	
public_key()

	A matching DSA public key.

	Returns

	a new DsaKey object

	
publickey()

	A matching DSA public key.

	Returns

	a new DsaKey object

	
Crypto.PublicKey.DSA.import_key(extern_key, passphrase=None)

	Import a DSA key.

	Parameters

	
	extern_key (string or byte string) – The DSA key to import.

The following formats are supported for a DSA public key:

	X.509 certificate (binary DER or PEM)

	X.509 subjectPublicKeyInfo (binary DER or PEM)

	OpenSSH (ASCII one-liner, see RFC4253 [http://www.ietf.org/rfc/rfc4253.txt])

The following formats are supported for a DSA private key:

	PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt] PrivateKeyInfo or EncryptedPrivateKeyInfo
DER SEQUENCE (binary or PEM)

	OpenSSL/OpenSSH custom format (binary or PEM)

For details about the PEM encoding, see RFC1421 [http://www.ietf.org/rfc/rfc1421.txt]/RFC1423 [http://www.ietf.org/rfc/rfc1423.txt].

	passphrase (string) – In case of an encrypted private key, this is the pass phrase
from which the decryption key is derived.

Encryption may be applied either at the PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt] or at the PEM level.

	Returns

	a DSA key object

	Return type

	DsaKey

	Raises

	ValueError – when the given key cannot be parsed (possibly because
the pass phrase is wrong).

ECC

ECC [http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/] (Elliptic Curve Cryptography) is a modern and efficient type of public key cryptography.
Its security is based on the difficulty to solve discrete logarithms
on the field defined by specific equations computed over a curve.

ECC can be used to create digital signatures or to perform a key exchange.

Compared to traditional algorithms like RSA, an ECC key
is significantly smaller at the same security level.
For instance, a 3072-bit RSA key takes 768 bytes whereas the equally strong NIST P-256
private key only takes 32 bytes (that is, 256 bits).

This module provides mechanisms for generating new ECC keys, exporting and importing them
using widely supported formats like PEM or DER.

	Curve

	Strings accepted for the curve API parameter

	NIST P-192

	'NIST P-192', 'p192', 'P-192', 'prime192v1', 'secp192r1'

	NIST P-224

	'NIST P-224', 'p224', 'P-224', 'prime224v1', 'secp224r1'

	NIST P-256

	'NIST P-256', 'p256', 'P-256', 'prime256v1', 'secp256r1'

	NIST P-384

	'NIST P-384', 'p384', 'P-384', 'prime384v1', 'secp384r1'

	NIST P-521

	'NIST P-521', 'p521', 'P-521', 'prime521v1', 'secp521r1'

	Ed25519

	'ed25519', 'Ed25519'

	Ed448

	'ed448', 'Ed448'

For more information about each NIST curve see FIPS 186-4 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf], Section D.1.2.

The Ed25519 and the Ed448 curves are defined in RFC8032 [https://datatracker.ietf.org/doc/html/rfc8032].

The following example demonstrates how to generate a new ECC key, export it,
and subsequently reload it back into the application:

>>> from Crypto.PublicKey import ECC
>>>
>>> key = ECC.generate(curve='P-256')
>>>
>>> f = open('myprivatekey.pem','wt')
>>> f.write(key.export_key(format='PEM'))
>>> f.close()
...
>>> f = open('myprivatekey.pem','rt')
>>> key = ECC.import_key(f.read())

The ECC key can be used to perform or verify signatures, using the modules
Crypto.Signature.DSS (ECDSA; NIST curves only)
or Crypto.Signature.eddsa (EdDSA; Ed25519 and Ed448 curve only).

	
class Crypto.PublicKey.ECC.EccKey(**kwargs)

	Class defining an ECC key.
Do not instantiate directly.
Use generate(), construct() or import_key() instead.

	Variables

	
	curve (string) – The name of the curve as defined in the ECC table.

	pointQ (EccPoint) – an ECC point representating the public component.

	d (integer) – A scalar that represents the private component
in NIST P curves. It is smaller than the
order of the generator point.

	seed (bytes) – A seed that representats the private component
in EdDSA curves
(Ed25519, 32 bytes; Ed448, 57 bytes).

	
export_key(**kwargs)

	Export this ECC key.

	Parameters

	
	format (string) – The format to use for encoding the key:

	'DER'. The key will be encoded in ASN.1 DER format (binary).
For a public key, the ASN.1 subjectPublicKeyInfo structure
defined in RFC5480 [https://tools.ietf.org/html/rfc5480] will be used.
For a private key, the ASN.1 ECPrivateKey structure defined
in RFC5915 [https://datatracker.ietf.org/doc/html/rfc5915] is used instead (possibly within a PKCS#8 envelope,
see the use_pkcs8 flag below).

	'PEM'. The key will be encoded in a PEM [http://www.ietf.org/rfc/rfc1421.txt] envelope (ASCII).

	'OpenSSH'. The key will be encoded in the OpenSSH [http://www.openssh.com/txt/rfc5656.txt] format
(ASCII, public keys only).

	'SEC1'. The public key (i.e., the EC point) will be encoded
into bytes according to Section 2.3.3 of SEC1 [https://www.secg.org/sec1-v2.pdf]
(which is a subset of the older X9.62 ITU standard).
Only for NIST P-curves.

	'raw'. The public key will be encoded as bytes,
without any metadata.

	For NIST P-curves: equivalent to 'SEC1'.

	For EdDSA curves: bytes in the format defined in RFC8032 [https://datatracker.ietf.org/doc/html/rfc8032].

	passphrase (byte string or string) – The passphrase to use for protecting the private key.

	use_pkcs8 (boolean) – Only relevant for private keys.

If True (default and recommended), the PKCS#8 [https://datatracker.ietf.org/doc/html/rfc5208] representation
will be used. It must be True for EdDSA curves.

	protection (string) – When a private key is exported with password-protection
and PKCS#8 (both DER and PEM formats), this parameter MUST be
present and be a valid algorithm supported by Crypto.IO.PKCS8.
It is recommended to use PBKDF2WithHMAC-SHA1AndAES128-CBC.

	compress (boolean) – If True, the method returns a more compact representation
of the public key, with the X-coordinate only.

If False (default), the method returns the full public key.

This parameter is ignored for EdDSA curves, as compression is
mandatory.

Warning

If you don’t provide a passphrase, the private key will be
exported in the clear!

Note

When exporting a private key with password-protection and PKCS#8 [https://datatracker.ietf.org/doc/html/rfc5208]
(both DER and PEM formats), any extra parameters
to export_key() will be passed to Crypto.IO.PKCS8.

	Returns

	A multi-line string (for 'PEM' and 'OpenSSH') or
bytes (for 'DER', 'SEC1', and 'raw') with the encoded key.

	
has_private()

	True if this key can be used for making signatures or decrypting data.

	
public_key()

	A matching ECC public key.

	Returns

	a new EccKey object

	
class Crypto.PublicKey.ECC.EccPoint(x, y, curve='p256')

	A class to model a point on an Elliptic Curve.

The class supports operators for:

	Adding two points: R = S + T

	In-place addition: S += T

	Negating a point: R = -T

	Comparing two points: if S == T: ... or if S != T: ...

	Multiplying a point by a scalar: R = S*k

	In-place multiplication by a scalar: T *= k

	Variables

	
	x (integer) – The affine X-coordinate of the ECC point

	y (integer) – The affine Y-coordinate of the ECC point

	xy – The tuple with affine X- and Y- coordinates

	
copy()

	Return a copy of this point.

	
double()

	Double this point (in-place operation).

	Returns

	This same object (to enable chaining).

	
is_point_at_infinity()

	True if this is the point-at-infinity.

	
point_at_infinity()

	Return the point-at-infinity for the curve.

	
size_in_bits()

	Size of each coordinate, in bits.

	
size_in_bytes()

	Size of each coordinate, in bytes.

	
exception Crypto.PublicKey.ECC.UnsupportedEccFeature

	

	
Crypto.PublicKey.ECC.construct(**kwargs)

	Build a new ECC key (private or public) starting
from some base components.

In most cases, you will already have an existing key
which you can read in with import_key() instead
of this function.

	Parameters

	
	curve (string) – Mandatory. The name of the elliptic curve, as defined in the ECC table.

	d (integer) – Mandatory for a private key and a NIST P-curve (e.g., P-256):
the integer in the range [1..order-1] that represents the key.

	seed (bytes) – Mandatory for a private key and an EdDSA curve.
It must be 32 bytes for Ed25519, and 57 bytes for Ed448.

	point_x (integer) – Mandatory for a public key: the X coordinate (affine) of the ECC point.

	point_y (integer) – Mandatory for a public key: the Y coordinate (affine) of the ECC point.

	Returns

	a new ECC key object

	Return type

	EccKey

	
Crypto.PublicKey.ECC.generate(**kwargs)

	Generate a new private key on the given curve.

	Parameters

	
	curve (string) – Mandatory. It must be a curve name defined in the ECC table.

	randfunc (callable) – Optional. The RNG to read randomness from.
If None, Crypto.Random.get_random_bytes() is used.

	
Crypto.PublicKey.ECC.import_key(encoded, passphrase=None, curve_name=None)

	Import an ECC key (public or private).

	Parameters

	
	encoded (bytes or multi-line string) – The ECC key to import.
The function will try to automatically detect the right format.

Supported formats for an ECC public key:

	X.509 certificate: binary (DER) or ASCII (PEM).

	X.509 subjectPublicKeyInfo: binary (DER) or ASCII (PEM).

	SEC1 [https://www.secg.org/sec1-v2.pdf] (or X9.62), as bytes. NIST P curves only.
You must also provide the curve_name (with a value from the ECC table)

	OpenSSH line, defined in RFC5656 [https://datatracker.ietf.org/doc/html/rfc5656] and RFC8709 [https://datatracker.ietf.org/doc/html/rfc8709] (ASCII).
This is normally the content of files like ~/.ssh/id_ecdsa.pub.

Supported formats for an ECC private key:

	A binary ECPrivateKey structure, as defined in RFC5915 [https://datatracker.ietf.org/doc/html/rfc5915] (DER).
NIST P curves only.

	A PKCS#8 [https://datatracker.ietf.org/doc/html/rfc5208] structure (or the more recent Asymmetric Key Package, RFC5958 [https://datatracker.ietf.org/doc/html/rfc5958]): binary (DER) or ASCII (PEM).

	OpenSSH 6.5 [https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf] and newer versions (ASCII).

Private keys can be in the clear or password-protected.

For details about the PEM encoding, see RFC1421 [https://datatracker.ietf.org/doc/html/rfc1421]/RFC1423 [https://datatracker.ietf.org/doc/html/rfc1423].

	passphrase (byte string) – The passphrase to use for decrypting a private key.
Encryption may be applied protected at the PEM level (not recommended)
or at the PKCS#8 level (recommended).
This parameter is ignored if the key in input is not encrypted.

	curve_name (string) – For a SEC1 encoding only. This is the name of the curve,
as defined in the ECC table.

Note

To import EdDSA private and public keys, when encoded as raw bytes, use:

	Crypto.Signature.eddsa.import_public_key(), or

	Crypto.Signature.eddsa.import_private_key().

	Returns

	a new ECC key object

	Return type

	EccKey

	Raises

	ValueError – when the given key cannot be parsed (possibly because
the pass phrase is wrong).

El Gamal

Warning

Even though ElGamal algorithms are in theory reasonably secure,
in practice there are no real good reasons to prefer them to RSA
instead.

Signature algorithm

The security of the ElGamal signature scheme is based (like DSA) on the discrete
logarithm problem (DLP [http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf]). Given a cyclic group, a generator g,
and an element h, it is hard to find an integer x such that \(g^x = h\).

The group is the largest multiplicative sub-group of the integers modulo p,
with p prime.
The signer holds a value x (0<x<p-1) as private key, and its public
key (y where \(y=g^x \text{ mod } p\)) is distributed.

The ElGamal signature is twice as big as p.

Encryption algorithm

The security of the ElGamal encryption scheme is based on the computational
Diffie-Hellman problem (CDH [http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption]). Given a cyclic group, a generator g,
and two integers a and b, it is difficult to find
the element \(g^{ab}\) when only \(g^a\) and \(g^b\) are known, and not a and b.

As before, the group is the largest multiplicative sub-group of the integers
modulo p, with p prime.
The receiver holds a value a (0<a<p-1) as private key, and its public key
(b where \(b=g^a\)) is given to the sender.

The ElGamal ciphertext is twice as big as p.

Domain parameters

For both signature and encryption schemes, the values (p,g) are called
domain parameters.
They are not sensitive but must be distributed to all parties (senders and
receivers).
Different signers can share the same domain parameters, as can
different recipients of encrypted messages.

Security

Both DLP and CDH problem are believed to be difficult, and they have been proved
such (and therefore secure) for more than 30 years.

The cryptographic strength is linked to the magnitude of p.
In 2017, a sufficient size for p is deemed to be 2048 bits.
For more information, see the most recent ECRYPT [http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf] report.

The signature is four times larger than the equivalent DSA, and the ciphertext
is two times larger than the equivalent RSA.

Functionality

This module provides facilities for generating new ElGamal keys
and constructing them from known components.

	
Crypto.PublicKey.ElGamal.generate(bits, randfunc)

	Randomly generate a fresh, new ElGamal key.

The key will be safe for use for both encryption and signature
(although it should be used for only one purpose).

	Parameters

	
	bits (int) – Key length, or size (in bits) of the modulus p.
The recommended value is 2048.

	randfunc (callable) – Random number generation function; it should accept
a single integer N and return a string of random
N random bytes.

	Returns

	an ElGamalKey object

	
Crypto.PublicKey.ElGamal.construct(tup)

	Construct an ElGamal key from a tuple of valid ElGamal components.

The modulus p must be a prime.
The following conditions must apply:

\[\begin{split}\begin{align}
&1 < g < p-1 \\
&g^{p-1} = 1 \text{ mod } 1 \\
&1 < x < p-1 \\
&g^x = y \text{ mod } p
\end{align}\end{split}\]

	Parameters

	tup (tuple) – A tuple with either 3 or 4 integers,
in the following order:

	Modulus (p).

	Generator (g).

	Public key (y).

	Private key (x). Optional.

	Raises

	ValueError – when the key being imported fails the most basic ElGamal validity checks.

	Returns

	an ElGamalKey object

	
class Crypto.PublicKey.ElGamal.ElGamalKey(randfunc=None)

	Class defining an ElGamal key.
Do not instantiate directly.
Use generate() or construct() instead.

	Variables

	
	p – Modulus

	g – Generator

	y (integer) – Public key component

	x (integer) – Private key component

	
has_private()

	Whether this is an ElGamal private key

	
publickey()

	A matching ElGamal public key.

	Returns

	a new ElGamalKey object

Crypto.Protocol package

	Key Derivation Functions

	Secret Sharing Schemes

Key Derivation Functions

This module contains a collection of standard key derivation functions.

A key derivation function derives one or more secondary secret keys from
one primary secret (a master key or a pass phrase).

This is typically done to insulate the secondary keys from each other,
to avoid that leakage of a secondary key compromises the security of the
master key, or to thwart attacks on pass phrases (e.g. via rainbow tables).

PBKDF2

PBKDF2 is the most widespread algorithm for deriving keys from a password,
originally defined in version 2.0 of the PKCS#5 standard or in RFC2898 [https://www.ietf.org/rfc/rfc2898.txt].

It is computationally expensive (a property that can be tuned via the count parameter) so as to thwart dictionary and rainbow tables attacks.
However, it uses a very limited amount of RAM which makes it insufficiently
protected against advanced and motivated adversaries that can leverage GPUs.

New applications and protocols should use scrypt or bcrypt instead.

For example, if you need to derive two AES256 keys:

from Crypto.Protocol.KDF import PBKDF2
from Crypto.Hash import SHA512
from Crypto.Random import get_random_bytes

password = b'my super secret'
salt = get_random_bytes(16)
keys = PBKDF2(password, salt, 64, count=1000000, hmac_hash_module=SHA512)
key1 = keys[:32]
key2 = keys[32:]

	
Crypto.Protocol.KDF.PBKDF2(password, salt, dkLen=16, count=1000, prf=None, hmac_hash_module=None)

	Derive one or more keys from a password (or passphrase).

This function performs key derivation according to the PKCS#5 standard (v2.0).

	Parameters

	
	password (string or byte string) – The secret password to generate the key from.

Strings will be encoded as ISO 8859-1 (also known as Latin-1),
which does not allow any characters with codepoints > 255.

	salt (string or byte string) – A (byte) string to use for better protection from dictionary attacks.
This value does not need to be kept secret, but it should be randomly
chosen for each derivation. It is recommended to use at least 16 bytes.

Strings will be encoded as ISO 8859-1 (also known as Latin-1),
which does not allow any characters with codepoints > 255.

	dkLen (integer) – The cumulative length of the keys to produce.

Due to a flaw in the PBKDF2 design, you should not request more bytes
than the prf can output. For instance, dkLen should not exceed
20 bytes in combination with HMAC-SHA1.

	count (integer) – The number of iterations to carry out. The higher the value, the slower
and the more secure the function becomes.

You should find the maximum number of iterations that keeps the
key derivation still acceptable on the slowest hardware you must support.

Although the default value is 1000, it is recommended to use at least
1000000 (1 million) iterations.

	prf (callable) – A pseudorandom function. It must be a function that returns a
pseudorandom byte string from two parameters: a secret and a salt.
The slower the algorithm, the more secure the derivation function.
If not specified, HMAC-SHA1 is used.

	hmac_hash_module (module) – A module from Crypto.Hash implementing a Merkle-Damgard cryptographic
hash, which PBKDF2 must use in combination with HMAC.
This parameter is mutually exclusive with prf.

	Returns

	A byte string of length dkLen that can be used as key material.
If you want multiple keys, just break up this string into segments of the desired length.

scrypt

scrypt [http://www.tarsnap.com/scrypt.html] is a password-based key derivation function created by Colin Percival,
described in his paper “Stronger key derivation via sequential memory-hard functions” [http://www.tarsnap.com/scrypt/scrypt.pdf]
and in RFC7914 [https://tools.ietf.org/html/rfc7914].

In addition to being computationally expensive, it is also memory intensive and
therefore more secure against the risk of custom ASICs.

Example:

from Crypto.Protocol.KDF import scrypt
from Crypto.Random import get_random_bytes

password = b'my super secret'
salt = get_random_bytes(16)
key = scrypt(password, salt, 16, N=2**14, r=8, p=1)

	
Crypto.Protocol.KDF.scrypt(password, salt, key_len, N, r, p, num_keys=1)

	Derive one or more keys from a passphrase.

	Parameters

	
	password (string) – The secret pass phrase to generate the keys from.

	salt (string) – A string to use for better protection from dictionary attacks.
This value does not need to be kept secret,
but it should be randomly chosen for each derivation.
It is recommended to be at least 16 bytes long.

	key_len (integer) – The length in bytes of each derived key.

	N (integer) – CPU/Memory cost parameter. It must be a power of 2 and less
than \(2^{32}\).

	r (integer) – Block size parameter.

	p (integer) – Parallelization parameter.
It must be no greater than \((2^{32}-1)/(4r)\).

	num_keys (integer) – The number of keys to derive. Every key is key_len bytes long.
By default, only 1 key is generated.
The maximum cumulative length of all keys is \((2^{32}-1)*32\)
(that is, 128TB).

A good choice of parameters (N, r , p) was suggested
by Colin Percival in his presentation in 2009 [http://www.tarsnap.com/scrypt/scrypt-slides.pdf]:

	(2¹⁴, 8, 1) for interactive logins (≤100ms)

	(2²⁰, 8, 1) for file encryption (≤5s)

	Returns

	A byte string or a tuple of byte strings.

bcrypt

bcrypt [https://www.usenix.org/legacy/events/usenix99/provos/provos_html/node1.html] is a password hashing function designed by Niels Provos and David Mazières.

In addition to being computationally expensive, it is also memory intensive and
therefore more secure against the risk of custom ASICs.

This implementation only supports bcrypt hashes with prefix $2a.

By design, bcrypt only accepts passwords up to 72 byte long.
If you want to hash passwords with no restrictions on their length, it is common practice to apply a cryptographic hash and then BASE64-encode
For instance:

from base64 import b64encode
from Crypto.Hash import SHA256
from Crypto.Protocol.KDF import bcrypt

password = b"test"
b64pwd = b64encode(SHA256.new(password).digest())
bcrypt_hash = bcrypt(b64pwd, 12)

and to check them:

from base64 import b64encode
from Crypto.Hash import SHA256
from Crypto.Protocol.KDF import bcrypt

password_to_test = b"test"
try:
 b64pwd = b64encode(SHA256.new(password).digest())
 bcrypt_check(b64pwd, bcrypt_hash)
except ValueError:
 print("Incorrect password")

	
Crypto.Protocol.KDF.bcrypt(password, cost, salt=None)

	Hash a password into a key, using the OpenBSD bcrypt protocol.

	Parameters

	
	password (byte string or string) – The secret password or pass phrase.
It must be at most 72 bytes long.
It must not contain the zero byte.
Unicode strings will be encoded as UTF-8.

	cost (integer) – The exponential factor that makes it slower to compute the hash.
It must be in the range 4 to 31.
A value of at least 12 is recommended.

	salt (byte string) – Optional. Random byte string to thwarts dictionary and rainbow table
attacks. It must be 16 bytes long.
If not passed, a random value is generated.

	Return (byte string):

	The bcrypt hash

	Raises

	ValueError – if password is longer than 72 bytes or if it contains the zero byte

	
Crypto.Protocol.KDF.bcrypt_check(password, bcrypt_hash)

	Verify if the provided password matches the given bcrypt hash.

	Parameters

	
	password (byte string or string) – The secret password or pass phrase to test.
It must be at most 72 bytes long.
It must not contain the zero byte.
Unicode strings will be encoded as UTF-8.

	bcrypt_hash (byte string, bytearray) – The reference bcrypt hash the password needs to be checked against.

	Raises

	ValueError – if the password does not match

HKDF

The HMAC-based Extract-and-Expand key derivation function (HKDF) was designed by Hugo Krawczyk [https://eprint.iacr.org/2010/264.pdf].
It is standardized in RFC 5869 [https://tools.ietf.org/html/rfc5869] and in NIST SP-800 56C [http://csrc.nist.gov/publications/nistpubs/800-56C/SP-800-56C.pdf].

This KDF is not suitable for deriving keys from a password or for key stretching.

Example, for deriving two AES256 keys:

from Crypto.Protocol.KDF import HKDF
from Crypto.Hash import SHA512
from Crypto.Random import get_random_bytes

salt = get_random_bytes(16)
key1, key2 = HKDF(master_secret, 32, salt, SHA512, 2)

	
Crypto.Protocol.KDF.HKDF(master, key_len, salt, hashmod, num_keys=1, context=None)

	Derive one or more keys from a master secret using
the HMAC-based KDF defined in RFC5869 [http://tools.ietf.org/html/rfc5869].

	Parameters

	
	master (byte string) – The unguessable value used by the KDF to generate the other keys.
It must be a high-entropy secret, though not necessarily uniform.
It must not be a password.

	key_len (integer) – The length in bytes of every derived key.

	salt (byte string) – A non-secret, reusable value that strengthens the randomness
extraction step.
Ideally, it is as long as the digest size of the chosen hash.
If empty, a string of zeroes in used.

	hashmod (module) – A cryptographic hash algorithm from Crypto.Hash.
Crypto.Hash.SHA512 is a good choice.

	num_keys (integer) – The number of keys to derive. Every key is key_len bytes long.
The maximum cumulative length of all keys is
255 times the digest size.

	context (byte string) – Optional identifier describing what the keys are used for.

	Returns

	A byte string or a tuple of byte strings.

Counter Mode

A KDF can be generically constructed with a pseudorandom function (PRF).
If the PRF has a fixed-length output,
you can evaluate the PRF multiple times and concatenate the results until you collect enough derived keying material.

This function implements such type of KDF, where a counter contributes to each invokation of the PRF, as defined in
NIST SP 800-108 Rev 1 [https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf].
The NIST standard only allows the use of HMAC (recommended) and CMAC (not recommended) as PRF.

This KDF is not suitable for deriving keys from a password.

Example 1 (HMAC as PRF, one AES128 key to derive):

>> from Crypto.Hash import SHA256, HMAC
>>
>> def prf(s, x):
>> return HMAC.new(s, x, SHA256).digest()
>>
>> key_derived = SP800_108_Counter(secret, 16, prf, label=b'Key A')

Example 2 (HMAC as PRF, two AES128 keys to derive):

>> from Crypto.Hash import SHA256, HMAC
>>
>> def prf(s, x):
>> return HMAC.new(s, x, SHA256).digest()
>>
>> key_A, key_B = SP800_108_Counter(secret, 16, prf, num_keys=2, label=b'Key AB')

Example 3 (CMAC as PRF, two AES256 keys to derive):

>> from Crypto.Cipher import AES
>> from Crypto.Hash import SHA256, CMAC
>>
>> def prf(s, x):
>> return CMAC.new(s, x, AES).digest()
>>
>> key_A, key_B = SP800_108_Counter(secret, 32, prf, num_keys=2, label=b'Key AB')

	
Crypto.Protocol.KDF.SP800_108_Counter(master, key_len, prf, num_keys=None, label=b'', context=b'')

	Derive one or more keys from a master secret using
a pseudorandom function in Counter Mode, as specified in
NIST SP 800-108r1 [https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf].

	Parameters

	
	master (byte string) – The secret value used by the KDF to derive the other keys.
It must not be a password.
The length on the secret must be consistent with the input expected by
the prf function.

	key_len (integer) – The length in bytes of each derived key.

	prf (function) – A pseudorandom function that takes two byte strings as parameters:
the secret and an input. It returns another byte string.

	num_keys (integer) – The number of keys to derive. Every key is key_len bytes long.
By default, only 1 key is derived.

	label (byte string) – Optional description of the purpose of the derived keys.
It must not contain zero bytes.

	context (byte string) – Optional information pertaining to
the protocol that uses the keys, such as the identity of the
participants, nonces, session IDs, etc.
It must not contain zero bytes.

	Returns

	
	a byte string (if num_keys is not specified), or

	a tuple of byte strings (if num_key is specified).

PBKDF1

PBKDF1 is an old key derivation function defined in version 2.0 of the PKCS#5 standard (v1.5) or in RFC2898 [https://www.ietf.org/rfc/rfc2898.txt].

Warning

Newer applications should use the more secure and versatile scrypt instead.

	
Crypto.Protocol.KDF.PBKDF1(password, salt, dkLen, count=1000, hashAlgo=None)

	Derive one key from a password (or passphrase).

This function performs key derivation according to an old version of
the PKCS#5 standard (v1.5) or RFC2898 [https://www.ietf.org/rfc/rfc2898.txt].

	Parameters

	
	password (string) – The secret password to generate the key from.

	salt (byte string) – An 8 byte string to use for better protection from dictionary attacks.
This value does not need to be kept secret, but it should be randomly
chosen for each derivation.

	dkLen (integer) – The length of the desired key. The default is 16 bytes, suitable for
instance for Crypto.Cipher.AES.

	count (integer) – The number of iterations to carry out. The recommendation is 1000 or
more.

	hashAlgo (module) – The hash algorithm to use, as a module or an object from the Crypto.Hash package.
The digest length must be no shorter than dkLen.
The default algorithm is Crypto.Hash.SHA1.

	Returns

	A byte string of length dkLen that can be used as key.

Secret Sharing Schemes

This module implements the Shamir’s secret sharing protocol
described in the paper “How to share a secret” [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.8910&rep=rep1&type=pdf].

The secret can be split into an arbitrary number of shares (n),
such that it is sufficient to collect just k of them to reconstruct it (k < n).
For instance, one may want to grant 16 people the ability to access a system
with a pass code, at the condition that at least 3 of them are present at
the same time. As they join their shares, the pass code is revealed.
In that case, n=16 and k=3.

In the Shamir’s secret sharing scheme, the n shares are created by first
defining a polynomial of degree k-1:

\(q(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{k-1} x^{k-1}\)

The coefficient \(a_0\) is fixed with the secret value.
The coefficients \(a_1 \ldots a_{k-1}\) are random and they are discarded as soon as the shares are created.

Each share is a pair \((x_i, y_i)\), where \(x_i\) is an arbitrary
but unique number assigned to the share’s recipient and \(y_i=q(x_i)\).

This implementation has the following properties:

	The secret is a byte string of 16 bytes (e.g. an AES 128 key).

	Each share is a byte string of 16 bytes.

	The recipients of the shares are assigned an integer starting from 1 (share number \(x_i\)).

	The polynomial \(q(x)\) is defined over the field GF(\(2^{128}\)) with
the same irriducible polynomial as used in AES-GCM: \(1 + x + x^2 + x^7 + x^{128}\).

	It can be compatible with the popular ssss [http://point-at-infinity.org/ssss/] tool when used with the 128 bit security level
and no dispersion: the command line arguments must include -s 128 -D.
Note that ssss uses a slightly different polynomial:

\(r(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{k-1} x^{k-1} + x^k\)

which requires you to specify ssss=True when calling split() and combine().

Each recipient needs to hold both the share number (\(x_i\), which is not confidential) and
the secret (which needs to be protected securely).

As an example, the following code shows how to protect a file meant
for 5 people, in such a way that any 2 of them are sufficient to
reassemble it:

>>> from binascii import hexlify
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>> from Crypto.Protocol.SecretSharing import Shamir
>>>
>>> key = get_random_bytes(16)
>>> shares = Shamir.split(2, 5, key)
>>> for idx, share in shares:
>>> print "Index #%d: %s" % (idx, hexlify(share))
>>>
>>> with open("clear.txt", "rb") as fi, open("enc.txt", "wb") as fo:
>>> cipher = AES.new(key, AES.MODE_EAX)
>>> ct, tag = cipher.encrypt(fi.read()), cipher.digest()
>>> fo.write(cipher.nonce + tag + ct)

Each person can be given one share and the encrypted file.

When 2 people gather together with their shares, they can
decrypt the file:

>>> from binascii import unhexlify
>>> from Crypto.Cipher import AES
>>> from Crypto.Protocol.SecretSharing import Shamir
>>>
>>> shares = []
>>> for x in range(2):
>>> in_str = raw_input("Enter index and share separated by comma: ")
>>> idx, share = [strip(s) for s in in_str.split(",")]
>>> shares.append((idx, unhexlify(share)))
>>> key = Shamir.combine(shares)
>>>
>>> with open("enc.txt", "rb") as fi:
>>> nonce, tag = [fi.read(16) for x in range(2)]
>>> cipher = AES.new(key, AES.MODE_EAX, nonce)
>>> try:
>>> result = cipher.decrypt(fi.read())
>>> cipher.verify(tag)
>>> with open("clear2.txt", "wb") as fo:
>>> fo.write(result)
>>> except ValueError:
>>> print "The shares were incorrect"

Attention

Reconstruction may succeed but still produce the incorrect secret
if any of the presented shares is incorrect (due to data corruption
or to a malicious participant).

It is extremely important to also use an authentication mechanism
(such as the EAX cipher mode in the example).

	
class Crypto.Protocol.SecretSharing.Shamir

	Shamir’s secret sharing scheme.

A secret is split into n shares, and it is sufficient to collect
k of them to reconstruct the secret.

	
static combine(shares, ssss=False)

	Recombine a secret, if enough shares are presented.

	Parameters

	
	shares (tuples) – The k tuples, each containin the index (an integer) and
the share (a byte string, 16 bytes long) that were assigned to
a participant.

	ssss (bool) – If True, the shares were produced by the ssss utility.
Default: False.

	Returns

	The original secret, as a byte string (16 bytes long).

	
static split(k, n, secret, ssss=False)

	Split a secret into n shares.

The secret can be reconstructed later using just k shares
out of the original n.
Each share must be kept confidential to the person it was
assigned to.

Each share is associated to an index (starting from 1).

	Parameters

	
	k (integer) – The sufficient number of shares to reconstruct the secret (k < n).

	n (integer) – The number of shares that this method will create.

	secret (byte string) – A byte string of 16 bytes (e.g. the AES 128 key).

	ssss (bool) – If True, the shares can be used with the ssss utility.
Default: False.

	Return (tuples):

	n tuples. A tuple is meant for each participant and it contains two items:

	the unique index (an integer)

	the share (a byte string, 16 bytes)

Crypto.IO package

Modules for reading and writing cryptographic data.

	PEM

	PKCS#8

PEM

Set of functions for encapsulating data according to the PEM format.

PEM (Privacy Enhanced Mail) was an IETF standard for securing emails via a
Public Key Infrastructure. It is specified in RFC 1421-1424.

Even though it has been abandoned, the simple message encapsulation it defined
is still widely used today for encoding binary cryptographic objects like
keys and certificates into text.

	
Crypto.IO.PEM.encode(data, marker, passphrase=None, randfunc=None)

	Encode a piece of binary data into PEM format.

	Parameters

	
	data (byte string) – The piece of binary data to encode.

	marker (string) – The marker for the PEM block (e.g. “PUBLIC KEY”).
Note that there is no official master list for all allowed markers.
Still, you can refer to the OpenSSL [https://github.com/openssl/openssl/blob/master/include/openssl/pem.h] source code.

	passphrase (byte string) – If given, the PEM block will be encrypted. The key is derived from
the passphrase.

	randfunc (callable) – Random number generation function; it accepts an integer N and returns
a byte string of random data, N bytes long. If not given, a new one is
instantiated.

	Returns

	The PEM block, as a string.

	
Crypto.IO.PEM.decode(pem_data, passphrase=None)

	Decode a PEM block into binary.

	Parameters

	
	pem_data (string) – The PEM block.

	passphrase (byte string) – If given and the PEM block is encrypted,
the key will be derived from the passphrase.

	Returns

	A tuple with the binary data, the marker string, and a boolean to
indicate if decryption was performed.

	Raises

	ValueError – if decoding fails, if the PEM file is encrypted and no passphrase has
been provided or if the passphrase is incorrect.

PKCS#8

PKCS#8 [http://www.ietf.org/rfc/rfc5208.txt] is a standard for storing and transferring private key information.
The wrapped key can either be clear or encrypted.

All encryption algorithms are based on passphrase-based key derivation.
The following mechanisms are fully supported:

	PBKDF2WithHMAC-SHA1AndAES128-CBC

	PBKDF2WithHMAC-SHA1AndAES192-CBC

	PBKDF2WithHMAC-SHA1AndAES256-CBC

	PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC

	scryptAndAES128-CBC

	scryptAndAES192-CBC

	scryptAndAES256-CBC

The following mechanisms are only supported for importing keys.
They are much weaker than the ones listed above, and they are provided
for backward compatibility only:

	pbeWithMD5AndRC2-CBC

	pbeWithMD5AndDES-CBC

	pbeWithSHA1AndRC2-CBC

	pbeWithSHA1AndDES-CBC

	
Crypto.IO.PKCS8.wrap(private_key, key_oid, passphrase=None, protection=None, prot_params=None, key_params=<Crypto.Util.asn1.DerNull object>, randfunc=None)

	Wrap a private key into a PKCS#8 blob (clear or encrypted).

	Parameters

	
	private_key (byte string) – The private key encoded in binary form. The actual encoding is
algorithm specific. In most cases, it is DER.

	key_oid (string) – The object identifier (OID) of the private key to wrap.
It is a dotted string, like 1.2.840.113549.1.1.1 (for RSA keys).

	passphrase (bytes string or string) – The secret passphrase from which the wrapping key is derived.
Set it only if encryption is required.

	protection (string) – The identifier of the algorithm to use for securely wrapping the key.
The default value is PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC.

	prot_params (dictionary) – Parameters for the protection algorithm.

	Key

	Description

	iteration_count

	The KDF algorithm is repeated several times to
slow down brute force attacks on passwords
(called N or CPU/memory cost in scrypt).
The default value for PBKDF2 is 1000.
The default value for scrypt is 16384.

	salt_size

	Salt is used to thwart dictionary and rainbow
attacks on passwords. The default value is 8
bytes.

	block_size

	(scrypt only) Memory-cost (r). The default
value is 8.

	parallelization

	(scrypt only) CPU-cost (p). The default
value is 1.

	key_params (DER object or None) – The parameters field to use in the AlgorithmIdentifier
SEQUENCE. If None, no parameters field will be added.
By default, the ASN.1 type NULL is used.

	randfunc (callable) – Random number generation function; it should accept a single integer
N and return a string of random data, N bytes long.
If not specified, a new RNG will be instantiated
from Crypto.Random.

	Returns

	The PKCS#8-wrapped private key (possibly encrypted), as a byte string.

	
Crypto.IO.PKCS8.unwrap(p8_private_key, passphrase=None)

	Unwrap a private key from a PKCS#8 blob (clear or encrypted).

	Parameters

	
	p8_private_key (byte string) – The private key wrapped into a PKCS#8 blob, DER encoded.

	passphrase (byte string or string) – The passphrase to use to decrypt the blob (if it is encrypted).

	Returns

	A tuple containing

	the algorithm identifier of the wrapped key (OID, dotted string)

	the private key (byte string, DER encoded)

	the associated parameters (byte string, DER encoded) or None

	Raises

	ValueError – if decoding fails

Crypto.Random package

	
Crypto.Random.get_random_bytes(N)

	Return a random byte string of length N.

Crypto.Random.random module

	
Crypto.Random.random.getrandbits(N)

	Return a random integer, at most N bits long.

	
Crypto.Random.random.randrange([start,]stop[, step])

	Return a random integer in the range (start, stop, step).
By default, start is 0 and step is 1.

	
Crypto.Random.random.randint(a, b)

	Return a random integer in the range no smaller than a
and no larger than b.

	
Crypto.Random.random.choice(seq)

	Return a random element picked from the sequence seq.

	
Crypto.Random.random.shuffle(seq)

	Randomly shuffle the sequence seq in-place.

	
Crypto.Random.random.sample(population, k)

	Randomly chooses k distinct elements from the list population.

Crypto.Util package

Useful modules that don’t belong in any other package.

Crypto.Util.Padding module

This module provides minimal support for adding and removing standard padding
from data. Example:

>>> from Crypto.Util.Padding import pad, unpad
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>>
>>> data = b'Unaligned' # 9 bytes
>>> key = get_random_bytes(32)
>>> iv = get_random_bytes(16)
>>>
>>> cipher1 = AES.new(key, AES.MODE_CBC, iv)
>>> ct = cipher1.encrypt(pad(data, 16))
>>>
>>> cipher2 = AES.new(key, AES.MODE_CBC, iv)
>>> pt = unpad(cipher2.decrypt(ct), 16)
>>> assert(data == pt)

	
Crypto.Util.Padding.pad(data_to_pad, block_size, style='pkcs7')

	Apply standard padding.

	Parameters

	
	data_to_pad (byte string) – The data that needs to be padded.

	block_size (integer) – The block boundary to use for padding. The output length is guaranteed
to be a multiple of block_size.

	style (string) – Padding algorithm. It can be ‘pkcs7’ (default), ‘iso7816’ or ‘x923’.

	Returns

	the original data with the appropriate padding added at the end.

	Return type

	byte string

	
Crypto.Util.Padding.unpad(padded_data, block_size, style='pkcs7')

	Remove standard padding.

	Parameters

	
	padded_data (byte string) – A piece of data with padding that needs to be stripped.

	block_size (integer) – The block boundary to use for padding. The input length
must be a multiple of block_size.

	style (string) – Padding algorithm. It can be ‘pkcs7’ (default), ‘iso7816’ or ‘x923’.

	Returns

	data without padding.

	Return type

	byte string

	Raises

	ValueError – if the padding is incorrect.

Crypto.Util.RFC1751 module

	
Crypto.Util.RFC1751.english_to_key(s)

	Transform a string into a corresponding key.

Example:

>>> from Crypto.Util.RFC1751 import english_to_key
>>> english_to_key('RAM LOIS GOAD CREW CARE HIT')
b'66666666'

	Parameters

	s (string) – the string with the words separated by whitespace;
the number of words must be a multiple of 6.

	Returns

	A byte string.

	
Crypto.Util.RFC1751.key_to_english(key)

	Transform an arbitrary key into a string containing English words.

Example:

>>> from Crypto.Util.RFC1751 import key_to_english
>>> key_to_english(b'66666666')
'RAM LOIS GOAD CREW CARE HIT'

	Parameters

	key (byte string) – The key to convert. Its length must be a multiple of 8.

	Returns

	A string of English words.

Crypto.Util.strxor module

Fast XOR for byte strings.

	
Crypto.Util.strxor.strxor(term1, term2, output=None)

	From two byte strings of equal length,
create a third one which is the byte-by-byte XOR of the two.

	Parameters

	
	term1 (bytes/bytearray/memoryview) – The first byte string to XOR.

	term2 (bytes/bytearray/memoryview) – The second byte string to XOR.

	output (bytearray/memoryview) – The location where the result will be written to.
It must have the same length as term1 and term2.
If None, the result is returned.

	Return

	If output is None, a new byte string with the result.
Otherwise None.

Note

term1 and term2 must have the same length.

	
Crypto.Util.strxor.strxor_c(term, c, output=None)

	From a byte string, create a second one of equal length
where each byte is XOR-red with the same value.

	Parameters

	
	term (bytes/bytearray/memoryview) – The byte string to XOR.

	c (int) – Every byte in the string will be XOR-ed with this value.
It must be between 0 and 255 (included).

	output (None or bytearray/memoryview) – The location where the result will be written to.
It must have the same length as term.
If None, the result is returned.

	Returns

	If output is None, a new bytes string with the result.
Otherwise None.

Crypto.Util.Counter module

Richer counter functions for CTR cipher mode.

CTR is a mode of operation for block ciphers.

The plaintext is broken up in blocks and each block is XOR-ed with a keystream to
obtain the ciphertext.
The keystream is produced by the encryption of a sequence of counter blocks, which
all need to be different to avoid repetitions in the keystream. Counter blocks
don’t need to be secret.

The most straightforward approach is to include a counter field, and increment
it by one within each subsequent counter block.

The new() function at the module level under Crypto.Cipher instantiates
a new CTR cipher object for the relevant base algorithm.
Its parameters allow you define a counter block with a fixed structure:

	an optional, fixed prefix

	the counter field encoded in big endian mode

The length of the two components can vary, but together they must be as large
as the block size (e.g. 16 bytes for AES).

Alternatively, the counter parameter can be used to pass a counter block
object (created in advance with the function Crypto.Util.Counter.new())
for a more complex composition:

	an optional, fixed prefix

	the counter field, encoded in big endian or little endian mode

	an optional, fixed suffix

As before, the total length must match the block size.

The counter blocks with a big endian counter will look like this:

[image: ../../_images/counter_be.png]

The counter blocks with a little endian counter will look like this:

[image: ../../_images/counter_le.png]

Example of AES-CTR encryption with custom counter:

from Crypto.Cipher import AES
from Crypto.Util import Counter
from Crypto import Random

nonce = Random.get_random_bytes(4)
ctr = Counter.new(64, prefix=nonce, suffix=b'ABCD', little_endian=True, initial_value=10)
key = b'AES-128 symm key'
plaintext = b'X'*1000000
cipher = AES.new(key, AES.MODE_CTR, counter=ctr)
ciphertext = cipher.encrypt(plaintext)

	
Crypto.Util.Counter.new(nbits, prefix=b'', suffix=b'', initial_value=1, little_endian=False, allow_wraparound=False)

	Create a stateful counter block function suitable for CTR encryption modes.

Each call to the function returns the next counter block.
Each counter block is made up by three parts:

	prefix

	counter value

	postfix

The counter value is incremented by 1 at each call.

	Parameters

	
	nbits (integer) – Length of the desired counter value, in bits. It must be a multiple of 8.

	prefix (byte string) – The constant prefix of the counter block. By default, no prefix is
used.

	suffix (byte string) – The constant postfix of the counter block. By default, no suffix is
used.

	initial_value (integer) – The initial value of the counter. Default value is 1.
Its length in bits must not exceed the argument nbits.

	little_endian (boolean) – If True, the counter number will be encoded in little endian format.
If False (default), in big endian format.

	allow_wraparound (boolean) – This parameter is ignored.

	Returns

	An object that can be passed with the counter parameter to a CTR mode
cipher.

It must hold that len(prefix) + nbits//8 + len(suffix) matches the
block size of the underlying block cipher.

Crypto.Util.number module

	
Crypto.Util.number.bytes_to_long(s)

	Convert a byte string to a long integer (big endian).

In Python 3.2+, use the native method instead:

>>> int.from_bytes(s, 'big')

For instance:

>>> int.from_bytes(b'P', 'big')
80

This is (essentially) the inverse of long_to_bytes().

	
Crypto.Util.number.ceil_div(n, d)

	Return ceil(n/d), that is, the smallest integer r such that r*d >= n

	
Crypto.Util.number.getPrime(N, randfunc=None)

	Return a random N-bit prime number.

N must be an integer larger than 1.
If randfunc is omitted, then Random.get_random_bytes() is used.

	
Crypto.Util.number.getRandomInteger(N, randfunc=None)

	Return a random number at most N bits long.

If randfunc is omitted, then Random.get_random_bytes() is used.

Deprecated since version 3.0: This function is for internal use only and may be renamed or removed in
the future. Use Crypto.Random.random.getrandbits() instead.

	
Crypto.Util.number.getRandomNBitInteger(N, randfunc=None)

	Return a random number with exactly N-bits,
i.e. a random number between 2**(N-1) and (2**N)-1.

If randfunc is omitted, then Random.get_random_bytes() is used.

Deprecated since version 3.0: This function is for internal use only and may be renamed or removed in
the future.

	
Crypto.Util.number.getRandomRange(a, b, randfunc=None)

	Return a random number n so that a <= n < b.

If randfunc is omitted, then Random.get_random_bytes() is used.

Deprecated since version 3.0: This function is for internal use only and may be renamed or removed in
the future. Use Crypto.Random.random.randrange() instead.

	
Crypto.Util.number.getStrongPrime(N, e=0, false_positive_prob=1e-06, randfunc=None)

	Return a random strong N-bit prime number.
In this context, p is a strong prime if p-1 and p+1 have at
least one large prime factor.

	Parameters

	
	N (integer) – the exact length of the strong prime.
It must be a multiple of 128 and > 512.

	e (integer) – if provided, the returned prime (minus 1)
will be coprime to e and thus suitable for RSA where
e is the public exponent.

	false_positive_prob (float) – The statistical probability for the result not to be actually a
prime. It defaults to 10-6.
Note that the real probability of a false-positive is far less. This is
just the mathematically provable limit.

	randfunc (callable) – A function that takes a parameter N and that returns
a random byte string of such length.
If omitted, Crypto.Random.get_random_bytes() is used.

	Returns

	The new strong prime.

Deprecated since version 3.0: This function is for internal use only and may be renamed or removed in
the future.

	
Crypto.Util.number.inverse(u, v)

	The inverse of u mod v.

	
Crypto.Util.number.isPrime(N, false_positive_prob=1e-06, randfunc=None)

	Test if a number N is a prime.

	Parameters

	
	false_positive_prob (float) – The statistical probability for the result not to be actually a
prime. It defaults to 10-6.
Note that the real probability of a false-positive is far less.
This is just the mathematically provable limit.

	randfunc (callable) – A function that takes a parameter N and that returns
a random byte string of such length.
If omitted, Crypto.Random.get_random_bytes() is used.

	Returns

	True is the input is indeed prime.

	
Crypto.Util.number.long_to_bytes(n, blocksize=0)

	Convert a positive integer to a byte string using big endian encoding.

If blocksize is absent or zero, the byte string will
be of minimal length.

Otherwise, the length of the byte string is guaranteed to be a multiple
of blocksize. If necessary, zeroes (\x00) are added at the left.

Note

In Python 3, if you are sure that n can fit into
blocksize bytes, you can simply use the native method instead:

>>> n.to_bytes(blocksize, 'big')

For instance:

>>> n = 80
>>> n.to_bytes(2, 'big')
b'\x00P'

However, and unlike this long_to_bytes() function,
an OverflowError exception is raised if n does not fit.

	
Crypto.Util.number.size(N)

	Returns the size of the number N in bits.

Crypto.Util.asn1 module

This module provides minimal support for encoding and decoding ASN.1 [ftp://ftp.rsasecurity.com/pub/pkcs/ascii/layman.asc] DER
objects.

	
class Crypto.Util.asn1.DerObject(asn1Id=None, payload=b'', implicit=None, constructed=False, explicit=None)

	Base class for defining a single DER object.

This class should never be directly instantiated.

	
decode(der_encoded, strict=False)

	Decode a complete DER element, and re-initializes this
object with it.

	Parameters

	der_encoded (byte string) – A complete DER element.

	Raises

	ValueError – in case of parsing errors.

	
encode()

	Return this DER element, fully encoded as a binary byte string.

	
class Crypto.Util.asn1.DerInteger(value=0, implicit=None, explicit=None)

	Class to model a DER INTEGER.

An example of encoding is:

>>> from Crypto.Util.asn1 import DerInteger
>>> from binascii import hexlify, unhexlify
>>> int_der = DerInteger(9)
>>> print hexlify(int_der.encode())

which will show 020109, the DER encoding of 9.

And for decoding:

>>> s = unhexlify(b'020109')
>>> try:
>>> int_der = DerInteger()
>>> int_der.decode(s)
>>> print int_der.value
>>> except ValueError:
>>> print "Not a valid DER INTEGER"

the output will be 9.

	Variables

	value (integer) – The integer value

	
decode(der_encoded, strict=False)

	Decode a DER-encoded INTEGER, and re-initializes this
object with it.

	Parameters

	der_encoded (byte string) – A complete INTEGER DER element.

	Raises

	ValueError – in case of parsing errors.

	
encode()

	Return the DER INTEGER, fully encoded as a
binary string.

	
class Crypto.Util.asn1.DerBoolean(value=False, implicit=None, explicit=None)

	Class to model a DER-encoded BOOLEAN.

An example of encoding is:

>>> from Crypto.Util.asn1 import DerBoolean
>>> bool_der = DerBoolean(True)
>>> print(bool_der.encode().hex())

which will show 0101ff, the DER encoding of True.

And for decoding:

>>> s = bytes.fromhex('0101ff')
>>> try:
>>> bool_der = DerBoolean()
>>> bool_der.decode(s)
>>> print(bool_der.value)
>>> except ValueError:
>>> print "Not a valid DER BOOLEAN"

the output will be True.

	Variables

	value (boolean) – The boolean value

	
decode(der_encoded, strict=False)

	Decode a DER-encoded BOOLEAN, and re-initializes this object with it.

	Parameters

	der_encoded (byte string) – A DER-encoded BOOLEAN.

	Raises

	ValueError – in case of parsing errors.

	
encode()

	Return the DER BOOLEAN, fully encoded as a binary string.

	
class Crypto.Util.asn1.DerOctetString(value=b'', implicit=None)

	Class to model a DER OCTET STRING.

An example of encoding is:

>>> from Crypto.Util.asn1 import DerOctetString
>>> from binascii import hexlify, unhexlify
>>> os_der = DerOctetString(b'\xaa')
>>> os_der.payload += b'\xbb'
>>> print hexlify(os_der.encode())

which will show 0402aabb, the DER encoding for the byte string
b'\xAA\xBB'.

For decoding:

>>> s = unhexlify(b'0402aabb')
>>> try:
>>> os_der = DerOctetString()
>>> os_der.decode(s)
>>> print hexlify(os_der.payload)
>>> except ValueError:
>>> print "Not a valid DER OCTET STRING"

the output will be aabb.

	Variables

	payload (byte string) – The content of the string

	
class Crypto.Util.asn1.DerNull

	Class to model a DER NULL element.

	
class Crypto.Util.asn1.DerSequence(startSeq=None, implicit=None, explicit=None)

	Class to model a DER SEQUENCE.

This object behaves like a dynamic Python sequence.

Sub-elements that are INTEGERs behave like Python integers.

Any other sub-element is a binary string encoded as a complete DER
sub-element (TLV).

An example of encoding is:

>>> from Crypto.Util.asn1 import DerSequence, DerInteger
>>> from binascii import hexlify, unhexlify
>>> obj_der = unhexlify('070102')
>>> seq_der = DerSequence([4])
>>> seq_der.append(9)
>>> seq_der.append(obj_der.encode())
>>> print hexlify(seq_der.encode())

which will show 3009020104020109070102, the DER encoding of the
sequence containing 4, 9, and the object with payload 02.

For decoding:

>>> s = unhexlify(b'3009020104020109070102')
>>> try:
>>> seq_der = DerSequence()
>>> seq_der.decode(s)
>>> print len(seq_der)
>>> print seq_der[0]
>>> print seq_der[:]
>>> except ValueError:
>>> print "Not a valid DER SEQUENCE"

the output will be:

3
4
[4, 9, b'

 Examples

Examples

Encrypt data with AES

The following code generates a new AES128 key and encrypts a piece of data into a file.
We use the EAX mode [http://en.wikipedia.org/wiki/EAX_mode] because it allows the receiver to detect any
unauthorized modification (similarly, we could have used other authenticated
encryption modes [http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html] like GCM [http://en.wikipedia.org/wiki/GCM_mode], CCM [http://en.wikipedia.org/wiki/CCM_mode] or SIV [http://tools.ietf.org/html/rfc5297]).

from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes

data = b'secret data'

key = get_random_bytes(16)
cipher = AES.new(key, AES.MODE_EAX)
ciphertext, tag = cipher.encrypt_and_digest(data)

file_out = open("encrypted.bin", "wb")
[file_out.write(x) for x in (cipher.nonce, tag, ciphertext)]
file_out.close()

At the other end, the receiver can securely load the piece of data back (if they know the key!).
Note that the code generates a ValueError exception when tampering is detected.

from Crypto.Cipher import AES

file_in = open("encrypted.bin", "rb")
nonce, tag, ciphertext = [file_in.read(x) for x in (16, 16, -1)]
file_in.close()

let's assume that the key is somehow available again
cipher = AES.new(key, AES.MODE_EAX, nonce)
data = cipher.decrypt_and_verify(ciphertext, tag)

Generate an RSA key

The following code generates a new RSA key pair (secret) and saves it into a file, protected by a password.
We use the scrypt [http://it.wikipedia.org/wiki/Scrypt] key derivation function to thwart dictionary attacks.
At the end, the code prints our the RSA public key in ASCII/PEM format:

from Crypto.PublicKey import RSA

secret_code = "Unguessable"
key = RSA.generate(2048)
encrypted_key = key.export_key(passphrase=secret_code, pkcs=8,
 protection="scryptAndAES128-CBC")

file_out = open("rsa_key.bin", "wb")
file_out.write(encrypted_key)
file_out.close()

print(key.publickey().export_key())

The following code reads the private RSA key back in, and then prints again the public key:

from Crypto.PublicKey import RSA

secret_code = "Unguessable"
encoded_key = open("rsa_key.bin", "rb").read()
key = RSA.import_key(encoded_key, passphrase=secret_code)

print(key.publickey().export_key())

Generate public key and private key

The following code generates public key stored in receiver.pem and private key stored in private.pem. These files will be used in the examples below. Every time, it generates different public key and private key pair.

from Crypto.PublicKey import RSA

key = RSA.generate(2048)
private_key = key.export_key()
file_out = open("private.pem", "wb")
file_out.write(private_key)
file_out.close()

public_key = key.publickey().export_key()
file_out = open("receiver.pem", "wb")
file_out.write(public_key)
file_out.close()

Encrypt data with RSA

The following code encrypts a piece of data for a receiver we have the RSA public key of.
The RSA public key is stored in a file called receiver.pem.

Since we want to be able to encrypt an arbitrary amount of data, we use a hybrid encryption scheme.
We use RSA with PKCS#1 OAEP [http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding] for asymmetric encryption of an AES session key.
The session key can then be used to encrypt all the actual data.

As in the first example, we use the EAX mode to allow detection of unauthorized modifications.

from Crypto.PublicKey import RSA
from Crypto.Random import get_random_bytes
from Crypto.Cipher import AES, PKCS1_OAEP

data = "I met aliens in UFO. Here is the map.".encode("utf-8")
file_out = open("encrypted_data.bin", "wb")

recipient_key = RSA.import_key(open("receiver.pem").read())
session_key = get_random_bytes(16)

Encrypt the session key with the public RSA key
cipher_rsa = PKCS1_OAEP.new(recipient_key)
enc_session_key = cipher_rsa.encrypt(session_key)

Encrypt the data with the AES session key
cipher_aes = AES.new(session_key, AES.MODE_EAX)
ciphertext, tag = cipher_aes.encrypt_and_digest(data)
[file_out.write(x) for x in (enc_session_key, cipher_aes.nonce, tag, ciphertext)]
file_out.close()

The receiver has the private RSA key. They will use it to decrypt the session key
first, and with that the rest of the file:

from Crypto.PublicKey import RSA
from Crypto.Cipher import AES, PKCS1_OAEP

file_in = open("encrypted_data.bin", "rb")

private_key = RSA.import_key(open("private.pem").read())

enc_session_key, nonce, tag, ciphertext = \
 [file_in.read(x) for x in (private_key.size_in_bytes(), 16, 16, -1)]
file_in.close()

Decrypt the session key with the private RSA key
cipher_rsa = PKCS1_OAEP.new(private_key)
session_key = cipher_rsa.decrypt(enc_session_key)

Decrypt the data with the AES session key
cipher_aes = AES.new(session_key, AES.MODE_EAX, nonce)
data = cipher_aes.decrypt_and_verify(ciphertext, tag)
print(data.decode("utf-8"))

 Frequently Asked Questions

Frequently Asked Questions

Is CTR cipher mode compatible with Java?

Yes. When you instantiate your AES cipher in Java:

Cipher cipher = Cipher.getInstance("AES/CTR/NoPadding");

SecretKeySpec keySpec = new SecretKeySpec(new byte[16], "AES");
IvParameterSpec ivSpec = new IvParameterSpec(new byte[16]);

cipher.init(Cipher.ENCRYPT_MODE, keySpec, ivSpec);

You are effectively using CTR mode without a fixed nonce and with
a 128-bit big endian counter starting at 0.
The counter will wrap around only after 2¹²⁸ blocks.

You can replicate the same keystream in PyCryptodome with:

ivSpec = b'\x00' * 16
ctr = AES.new(keySpec, AES.MODE_CTR, initial_value=ivSpec, nonce=b'')

Are RSASSA-PSS signatures compatible with Java?

Yes. For Java, you must consider that by default the
mask is generated by MGF1 with SHA-1 (regardless of how you hash
the message) and the salt is 20 bytes long.

If you want to use another algorithm or another salt length,
you must instantiate a PSSParameterSpec object, for instance:

Signature ss = Signature.getInstance("SHA256withRSA/PSS");
AlgorithmParameters pss1 = ss.getParameters();
PSSParameterSpec pssParameterSpec = new PSSParameterSpec("SHA-256", "MGF1", new MGF1ParameterSpec("SHA-256"), 32, 0xBC);
ss.setParameter(spec1);

Are RSASSA-PSS signatures compatible with OpenSSL?

Yes, but one quirk of OpenSSL (and of a few other libraries,
especially if they are wrappers to OpenSSL) is that the salt
length is computed in two possible ways:

	Salt length

	Value for EVP_PKEY_CTX_set_rsa_pss_saltlen()

	openssl pkeyutl command

	Same as digest size

	RSA_PSS_SALTLEN_DIGEST

	-pkeyopt rsa_pss_saltlen:digest

	Maximized

	RSA_PSS_SALTLEN_MAX

	-pkeyopt rsa_pss_saltlen:max

In PyCryptodome, the salt length matches the digest size by default
(which is what RFC8017 [https://tools.ietf.org/html/rfc8017#page-40] recommends).
However, you can also maximize the salt length with:

key = RSA.import_key(open('privkey.der').read())
h = SHA256.new(message)
max_salt_bytes = key.size_in_bytes() - h.digest_size - 2
signature = pss.new(key, salt_bytes=max_salt_bytes).sign(h)

Why do I get the error No module named Crypto on Windows?

Check the directory where Python packages are installed, like:

/path/to/python/Lib/site-packages/

You might find a directory named crypto, with all the PyCryptodome files in it.

The most likely cause is described here [https://github.com/dlitz/pycrypto/issues/156] and you can fix the problem with:

pip uninstall crypto
pip uninstall pycryptodome
pip install pycryptodome

The root cause is that, in the past, you most likely have installed an unrelated but similarly named package called crypto [https://pypi.org/project/crypto/],
which happens to operate under the namespace crypto.

The Windows filesystem is case-insensitive so crypto and Crypto are effectively considered the same thing.
When you subsequently install pycryptodome, pip finds that a directory named with the target namespace already exists (under the rules of the underlying filesystem),
and therefore installs all the sub-packages of pycryptodome in it.
This is probably a reasonable behavior, if it wasn’t that pip does not issue any warning even if it could detect the issue [https://github.com/pypa/pip/issues/3309].

Why does strxor raise TypeError: argument 2 must be bytes, not bytearray?

Most probably you have installed both the pycryptodome and the old pycrypto packages.

Run pip uninstall pycrypto and try again.

The old PyCrypto shipped with a strxor module written as a native library (.so or .dll file).
If you install pycryptodome, the old native module will still take priority over the new Python extension that comes in the latter.

Why do I get a translation_unit_or_empty undefined error with pycparser?

Unfortunately,``pycparser`` does not work with optimzed (-O) Python builds,
which strips out the docstrings, causing this error.
This is a known issue [https://github.com/eliben/pycparser/issues/291] and it will not be fixed.

The possible workarounds are:

	Do not run Python iwth -O

	Remove cffi and cparser. PyCryptodome will fall back to ctypes for interfacing with the native modules.

	Use an earlier version of cparser (2.14)

 Contribute and support

Contribute and support

	Do not be afraid to contribute with small and apparently insignificant
improvements like correction to typos. Every change counts.

	Read carefully the License of PyCryptodome. By submitting your code,
you acknowledge that you accept to release it according to the BSD 2-clause license [https://opensource.org/licenses/BSD-2-Clause].

	You must disclaim which parts of your code in your contribution were partially
copied or derived from an existing source. Ensure that the original is licensed
in a way compatible to the BSD 2-clause license.

	You can propose changes in any way you find most convenient.
However, the preferred approach is to:

	Clone the main repository on GitHub [https://github.com/Legrandin/pycryptodome].

	Create a branch and modify the code.

	Send a pull request [https://help.github.com/articles/about-pull-requests/] upstream with a meaningful description.

	Provide tests (in Crypto.SelfTest) along with code. If you fix a bug
add a test that fails in the current version and passes with your change.

	If your change breaks backward compatibility, highlight it and include
a justification.

	Ensure that your code complies to PEP8 [https://www.python.org/dev/peps/pep-0008/] and PEP257 [https://legacy.python.org/dev/peps/pep-0257/].

	If you add or modify a public interface, make sure the relevant type stubs
remain up to date.

	Ensure that your code does not use constructs or includes modules not
present in Python 2.6 [https://rgruet.free.fr/PQR26/PQR2.6.html].

	Add a short summary of the change to the file Changelog.rst.

	Add your name to the list of contributors in the file AUTHORS.rst.

The PyCryptodome mailing list is hosted on Google Groups [https://groups.google.com/forum/#!forum/pycryptodome].
You can mail any comment or question to pycryptodome@googlegroups.com.

Bug reports can be filed on the GitHub tracker [https://github.com/Legrandin/pycryptodome/issues].

 Future plans

Future plans

Future releases will include:

	Update Crypto.Signature.DSS to FIPS 186-4

	Make all hash objects non-copyable and immutable after the first digest

	Add alias ‘segment_bits’ to parameter ‘segment_size’ for CFB

	Coverage testing

	Implement AES with bitslicing

	Add unit tests for PEM I/O

	Move old ciphers into a Museum submodule

	Add more ECC curves

	Import/export of ECC keys with compressed points

	
	Add algorithms:

	
	Elliptic Curves (ECIES, ECDH)

	Camellia, GOST

	Diffie-Hellman

	bcrypt

	argon2

	SRP

	
	Add more key management:

	
	Export/import of DSA domain parameters

	JWK

	Add support for CMS/PKCS#7

	Add support for RNG backed by PKCS#11 and/or KMIP

	Add support for Format-Preserving Encryption

	Remove dependency on libtomcrypto headers

	Speed up (T)DES with a bitsliced implementation

	Run lint on the C code

	Add (minimal) support for PGP

	Add (minimal) support for PKIX / X.509

 Changelog

Changelog

3.18.0 (18 May 2023)

New features

	Added support for DER BOOLEAN encodings.

	The library now compiles on Windows ARM64. Thanks to Niyas Sait.

Resolved issues

	GH#739: OID encoding for arc 2 didn’t accept children larger than 39. Thanks to James.

	Correctly check that the scalar matches the point when importing an ECC private key.

3.17.0 (29 January 2023)

New features

	Added support for the Counter Mode KDF defined in SP 800-108 Rev 1.

	Reduce the minimum tag length for the EAX cipher to 2 bytes.

	An RSA object has 4 new properties for the CRT coefficients:
dp, dq, invq and invq (invp is the same value
as the existing u).

Resolved issues

	GH#526: improved typing for RSA.construct.

	GH#534: reduced memory consumption when using a large number
of cipher objects.

	GH#598: fixed missing error handling for Util.number.inverse.

	GH#629: improved typing for AES.new and the various
mode-specific types it returns. Thanks to Greg Werbin.

	GH#653: added workaround for an alleged GCC compiler bug
that affected Ed25519 code compiled for AVX2.

	GH#658: attribute curve of an ECC key was not always
the preferred curve name, as it used to be in v3.15.0
(independently of the curve name specified when generating
the key).

	GH#637: fixed typing for legacy modules PKCS1_v1_5 and PKCS1_PSS,
as their verify() returned a boolean.

	GH#664: with OCB mode, nonces of maximum length (15 bytes)
were actually used as 14 bytes nonces.
After this fix, data that was encrypted in past using the
(default) nonce length of 15 bytes can still be decrypted
by reducing the nonce to its first 14 bytes.

	GH#705: improved typing for nonce, iv, and IV parameters
of cipher objects.

Other changes

	Build PyPy wheels only for versions 3.8 and 3.9, and not for 3.7 anymore.

3.16.0 (26 November 2022)

New features

	Build wheels for musl Linux. Thanks to Ben Raz.

Resolved issues

	GH#639: ARC4 now also works with ‘keys’ as short as 8 bits.

	GH#669: fix segfaults when running in a manylinux2010 i686 image.

3.15.0 (22 June 2022)

New features

	Add support for curves Ed25519 and Ed448, including export and import of keys.

	Add support for EdDSA signatures.

	Add support for Asymmetric Key Packages (RFC5958) to import private keys.

Resolved issues

	GH#620: for Crypto.Util.number.getPrime , do not sequentially
scan numbers searching for a prime.

3.14.1 (5 February 2022)

Resolved issues

	GH#595: Fixed memory leak for GMP integers.
Thanks to Witalij Siebert and Pablo Quílez.

3.14.0 (30 January 2022)

New features

	Add support for curve NIST P-192.

3.13.0 (23 January 2022)

New features

	Add support for curve NIST P-224.

Resolved issues

	GH#590: Fixed typing info for Crypto.PublicKey.ECC.

Other changes

	Relaxed ECDSA requirements for FIPS 186 signatures and accept any SHA-2 or SHA-3 hash.
sign() and verify() will be performed even if the hash is stronger than the ECC key.

3.12.0 (4 December 2021)

New features

	ECC keys in the SEC1 format can be exported and imported.

	Add support for KMAC128, KMAC256, TupleHash128, and TupleHash256 (NIST SP-800 185).

	Add support for KangarooTwelve.

Resolved issues

	GH#563: An asymmetric key could not be imported as a memoryview.

	GH#566: cSHAKE128/256 generated a wrong output for customization strings
longer than 255 bytes.

	GH#582: CBC decryption generated the wrong plaintext when the input and the output were the same buffer.
Thanks to Michael K. Ashburn.

3.11.0 (8 October 2021)

Resolved issues

	GH#512: Especially for very small bit sizes, Crypto.Util.number.getPrime() was
occasionally generating primes larger than given the bit size. Thanks to Koki Takahashi.

	GH#552: Correct typing annotations for PKCS115_Cipher.decrypt().

	GH#555: decrypt() method of a PKCS#1v1.5 cipher returned a bytearray instead of bytes.

	GH#557: External DSA domain parameters were accepted even when the modulus (p) was not prime.
This affected Crypto.PublicKey.DSA.generate() and Crypto.PublicKey.DSA.construct().
Thanks to Koki Takahashi.

New features

	Added cSHAKE128 and cSHAKE256 (of SHA-3 family). Thanks to Michael Schaffner.

	GH#558: The flag RTLD_DEEPBIND passed to dlopen() is not well supported by
address sanitizers [https://github.com/google/sanitizers/issues/611].
It is now possible to set the environment variable PYCRYPTDOME_DISABLE_DEEPBIND
to drop that flag and allow security testing.

3.10.4 (25 September 2021)

Resolved issues

	Output of Crypto.Util.number.long_to_bytes() was not always a multiple of blocksize.

3.10.3 (22 September 2021)

Resolved issues

	GH#376: Fixed symbol conflict between different versions of libgmp.

	GH#481: Improved robustness of PKCS#1v1.5 decryption against timing attacks.

	GH#506 and GH#509: Fixed segmentation faults on Apple M1 and other Aarch64 SoCs,
when the GMP library was accessed via ctypes. Do not use GMP’s own sscanf
and snprintf routines: instead, use simpler conversion routines.

	GH#510: Workaround for cffi calling ctypes.util.find_library(), which
invokes gcc and ld on Linux, considerably slowing down all imports.
On certain configurations, that may also leave temporary files behind.

	GH#517: Fix RSAES-OAEP, as it didn’t always fail when zero padding was incorrect.

New features

	Added support for SHA-3 hash functions to HMAC.

Other changes

	The Windows wheels of Python 2.7 now require the VS2015 runtime to be installed in the system,
because Microsoft stopped distributing the VS2008 compiler in April 2021.
VS2008 was used to compile the Python 2.7 extensions.

3.10.1 (9 February 2021)

Other changes

	Python 3 wheels use abi3 ABI tag.

	Remove Appveyor CI.

3.10.0 (6 February 2021)

Resolved issues

	Fixed a potential memory leak when initializing block ciphers.

	GH#466: Crypto.Math.miller_rabin_test() was still using the system random
source and not the one provided as parameter.

	GH#469: RSA objects have the method public_key() like ECC objects.
The old method publickey() is still available for backward compatibility.

	GH#476: Crypto.Util.Padding.unpad() was raising an incorrect exception
in case of zero-length inputs. Thanks to Captainowie.

	GH#491: better exception message when Counter.new() is called with an integer
initial_value than doesn’t fit into nbits bits.

	GH#496: added missing block_size member for ECB cipher objects. Thanks to willem.

	GH#500: nonce member of an XChaCha20 cipher object was not matching the original nonce.
Thanks to Charles Machalow.

Other changes

	The bulk of the test vectors have been moved to the separate
package pycryptodome-test-vectors. As result, packages pycryptodome and
pycryptodomex become significantly smaller (from 14MB to 3MB).

	Moved CI tests and build service from Travis CI to GitHub Actions.

Breaks in compatibility

	Drop support for Python 2.6 and 3.4.

3.9.9 (2 November 2020)

Resolved issues

	GH#435: Fixed Crypto.Util.number.size for negative numbers.

New features

	Build Python 3.9 wheels on Windows.

3.9.8 (23 June 2020)

Resolved issues

	GH#426: The Shamir’s secret sharing implementation is not actually compatible with ssss.
Added an optional parameter to enable interoperability.

	GH#427: Skip altogether loading of gmp.dll on Windows.

	GH#420: Fix incorrect CFB decryption when the input and the output are the same buffer.

New features

	Speed up Shamir’s secret sharing routines. Thanks to ncarve.

3.9.7 (20 February 2020)

Resolved issues

	GH#381: Make notarization possible again on OS X when using wheels.
Thanks to Colin Atkinson.

3.9.6 (2 February 2020)

Resolved issues

	Fix building of wheels for OS X by explicitly setting sysroot location.

3.9.5 (1 February 2020)

Resolved issues

	RSA OAEP decryption was not verifying that all PS bytes are zero.

	GH#372: fixed memory leak for operations that use memoryviews when cffi is not installed.

	Fixed wrong ASN.1 OID for HMAC-SHA512 in PBE2.

New features

	Updated Wycheproof test vectors to version 0.8r12.

3.9.4 (18 November 2019)

Resolved issues

	GH#341: Prevent key_to_english from creating invalid data when fed with
keys of length not multiple of 8. Thanks to vstoykovbg.

	GH#347: Fix blocking RSA signing/decryption when key has very small factor.
Thanks to Martijn Pieters.

3.9.3 (12 November 2019)

Resolved issues

	GH#308: Align stack of functions using SSE2 intrinsics to avoid crashes,
when compiled with gcc on 32-bit x86 platforms.

3.9.2 (10 November 2019)

New features

	Add Python 3.8 wheels for Mac.

Resolved issues

	GH#308: Avoid allocating arrays of __m128i on the stack, to cope with buggy compilers.

	GH#322: Remove blanket -O3 optimization for gcc and clang, to cope with buggy compilers.

	GH#337: Fix typing stubs for signatures.

	GH#338: Deal with gcc installations that don’t have x86intrin.h.

3.9.1 (1 November 2019)

New features

	Add Python 3.8 wheels for Linux and Windows.

Resolved issues

	GH#328: minor speed-up when importing RSA.

3.9.0 (27 August 2019)

New features

	Add support for loading PEM files encrypted with AES256-CBC.

	Add support for XChaCha20 and XChaCha20-Poly1305 ciphers.

	Add support for bcrypt key derivation function (Crypto.Protocol.KDF.bcrypt).

	Add support for left multiplication of an EC point by a scalar.

	Add support for importing ECC and RSA keys in the new OpenSSH format.

Resolved issues

	GH#312: it was not possible to invert an EC point anymore.

	GH#316: fix printing of DSA keys.

	GH#317: DSA.generate() was not always using the randfunc input.

	GH#285: the MD2 hash had block size of 64 bytes instead of 16; as result the HMAC construction gave incorrect results.

3.8.2 (30 May 2019)

Resolved issues

	GH#291: fix strict aliasing problem, emerged with GCC 9.1.

3.8.1 (4 April 2019)

New features

	Add support for loading PEM files encrypted with AES192-CBC and AES256-GCM.

	When importing ECC keys in PEM format, ignore the redundant EC PARAMS section that was included by certain openssl commands.

Resolved issues

	repr() did not work for ECC.EccKey objects.

	Fix installation in development mode (setup install develop or pip install -e .).

	Minimal length for Blowfish cipher is 32 bits, not 40 bits.

	Various updates to docs.

3.8.0 (23 March 2019)

New features

	Speed-up ECC performance. ECDSA is 33 times faster on the NIST P-256 curve.

	Added support for NIST P-384 and P-521 curves.

	EccKey has new methods size_in_bits() and size_in_bytes().

	Support HMAC-SHA224, HMAC-SHA256, HMAC-SHA384, and HMAC-SHA512 in PBE2/PBKDF2.

Resolved issues

	DER objects were not rejected if their length field had a leading zero.

	Allow legacy RC2 ciphers to have 40-bit keys.

	ASN.1 Object IDs did not allow the value 0 in the path.

Breaks in compatibility

	point_at_infinity() becomes an instance method for Crypto.PublicKey.ECC.EccKey, from a static one.

3.7.3 (19 January 2019)

Resolved issues

	GH#258: False positive on PSS signatures when externally provided salt is too long.

	Include type stub files for Crypto.IO and Crypto.Util.

3.7.2 (26 November 2018)

Resolved issues

	GH#242: Fixed compilation problem on ARM platforms.

3.7.1 (25 November 2018)

New features

	Added type stubs to enable static type checking with mypy. Thanks to Michael Nix.

	New update_after_digest flag for CMAC.

Resolved issues

	GH#232: Fixed problem with gcc 4.x when compiling ghash_clmul.c.

	GH#238: Incorrect digest value produced by CMAC after cloning the object.

	Method update() of an EAX cipher object was returning the underlying CMAC object,
instead of the EAX object itself.

	Method update() of a CMAC object was not throwing an exception after the digest
was computed (with digest() or verify()).

3.7.0 (27 October 2018)

New features

	Added support for Poly1305 MAC (with AES and ChaCha20 ciphers for key derivation).

	Added support for ChaCha20-Poly1305 AEAD cipher.

	New parameter output for Crypto.Util.strxor.strxor, Crypto.Util.strxor.strxor_c,
encrypt and decrypt methods in symmetric ciphers (Crypto.Cipher package).
output is a pre-allocated buffer (a bytearray or a writeable memoryview)
where the result must be stored.
This requires less memory for very large payloads; it is also more efficient when
encrypting (or decrypting) several small payloads.

Resolved issues

	GH#266: AES-GCM hangs when processing more than 4GB at a time on x86 with PCLMULQDQ instruction.

Breaks in compatibility

	Drop support for Python 3.3.

	Remove Crypto.Util.py3compat.unhexlify and Crypto.Util.py3compat.hexlify.

	With the old Python 2.6, use only ctypes (and not cffi) to interface to native code.

3.6.6 (17 August 2018)

Resolved issues

	GH#198: Fix vulnerability on AESNI ECB with payloads smaller than 16 bytes (CVE-2018-15560).

3.6.5 (12 August 2018)

Resolved issues

	GH#187: Fixed incorrect AES encryption/decryption with AES acceleration on x86
due to gcc’s optimization and strict aliasing rules.

	GH#188: More prime number candidates than necessary where discarded as composite
due to the limited way D values were searched in the Lucas test.

	Fixed ResouceWarnings and DeprecationWarnings.

	Workaround for Python 3.7.0 bug on Windows (https://bugs.python.org/issue34108).

3.6.4 (10 July 2018)

New features

	Build Python 3.7 wheels on Linux, Windows and Mac.

Resolved issues

	GH#178: Rename _cpuid module to make upgrades more robust.

	More meaningful exceptions in case of mismatch in IV length (CBC/OFB/CFB modes).

	Fix compilation issues on Solaris 10/11.

3.6.3 (21 June 2018)

Resolved issues

	GH#175: Fixed incorrect results for CTR encryption/decryption with more than 8 blocks.

3.6.2 (19 June 2018)

New features

	ChaCha20 accepts 96 bit nonces (in addition to 64 bit nonces)
as defined in RFC7539.

	Accelerate AES-GCM on x86 using PCLMULQDQ instruction.

	Accelerate AES-ECB and AES-CTR on x86 by pipelining AESNI instructions.

	As result of the two improvements above, on x86 (Broadwell):

	AES-ECB and AES-CTR are 3x faster

	AES-GCM is 9x faster

Resolved issues

	On Windows, MPIR library was stilled pulled in if renamed to gmp.dll.

Breaks in compatibility

	In Crypto.Util.number, functions floor_div and exact_div
have been removed. Also, ceil_div is limited to non-negative terms only.

3.6.1 (15 April 2018)

New features

	Added Google Wycheproof tests (https://github.com/google/wycheproof)
for RSA, DSA, ECDSA, GCM, SIV, EAX, CMAC.

	New parameter mac_len (length of MAC tag) for CMAC.

Resolved issues

	In certain circumstances (at counter wrapping, which happens on average after
32 GB) AES GCM produced wrong ciphertexts.

	Method encrypt() of AES SIV cipher could be still called,
whereas only encrypt_and_digest() is allowed.

3.6.0 (8 April 2018)

New features

	Introduced export_key and deprecated exportKey for DSA and RSA key
objects.

	Ciphers and hash functions accept memoryview objects in input.

	Added support for SHA-512/224 and SHA-512/256.

Resolved issues

	Reintroduced Crypto.__version__ variable as in PyCrypto.

	Fixed compilation problem with MinGW.

3.5.1 (8 March 2018)

Resolved issues

	GH#142. Fix mismatch with declaration and definition of addmul128.

3.5.0 (7 March 2018)

New features

	Import and export of ECC curves in compressed form.

	The initial counter for a cipher in CTR mode can be a byte string
(in addition to an integer).

	Faster PBKDF2 for HMAC-based PRFs (at least 20x for short passwords,
more for longer passwords). Thanks to Christian Heimes for pointing
out the implementation was under-optimized.

	The salt for PBKDF2 can be either a string or bytes (GH#67).

	Ciphers and hash functions accept data as bytearray, not just
binary strings.

	The old SHA-1 and MD5 hash functions are available even when Python’s
own hashlib does not include them.

Resolved issues

	Without libgmp, modular exponentiation (since v3.4.8) crashed
on 32-bit big-endian systems.

Breaks in compatibility

	Removed support for Python < 2.6.

3.4.12 (5 February 2018)

Resolved issues

	GH#129. pycryptodomex could only be installed via wheels.

3.4.11 (5 February 2018)

Resolved issues

	GH#121. the record list was still not correct due to PEP3147
and __pycache__ directories. Thanks again to John O’Brien.

3.4.10 (2 February 2018)

Resolved issues

	When creating ElGamal keys, the generator wasn’t a square residue:
ElGamal encryption done with those keys cannot be secure under
the DDH assumption. Thanks to Weikeng Chen.

3.4.9 (1 February 2018)

New features

	More meaningful error messages while importing an ECC key.

Resolved issues

	GH#123 and #125. The SSE2 command line switch was not always passed on 32-bit x86 platforms.

	GH#121. The record list (–record) was not always correctly filled for the
pycryptodomex package. Thanks to John W. O’Brien.

3.4.8 (27 January 2018)

New features

	Added a native extension in pure C for modular exponentiation, optimized for SSE2 on x86.
In the process, we drop support for the arbitrary arithmetic library MPIR
on Windows, which is painful to compile and deploy.
The custom modular exponentiation is 130% (160%) slower on an Intel CPU in 32-bit (64-bit) mode,
compared to MPIR. Still, that is much faster that CPython’s own pow() function which
is 900% (855%) slower than MPIR. Support for the GMP library on Unix remains.

	Added support for manylinux wheels.

	Support for Python 3.7.

Resolved issues

	The DSA parameter ‘p’ prime was created with 255 bits cleared
(but still with the correct strength).

	GH#106. Not all docs were included in the tar ball.
Thanks to Christopher Hoskin.

	GH#109. ECDSA verification failed for DER encoded signatures.
Thanks to Alastair Houghton.

	Human-friendly messages for padding errors with ECB and CBC.

3.4.7 (26 August 2017)

New features

	API documentation is made with sphinx instead of epydoc.

	Start using importlib instead of imp where available.

Resolved issues

	GH#82. Fixed PEM header for RSA/DSA public keys.

3.4.6 (18 May 2017)

Resolved issues

	GH#65. Keccak, SHA3, SHAKE and the seek functionality for ChaCha20 were
not working on big endian machines. Fixed. Thanks to Mike Gilbert.

	A few fixes in the documentation.

3.4.5 (6 February 2017)

Resolved issues

	The library can also be compiled using MinGW.

3.4.4 (1 February 2017)

Resolved issues

	Removed use of alloca().

	[Security] Removed implementation of deprecated “quick check” feature of PGP block cipher mode.

	Improved the performance of scrypt by converting some Python to C.

3.4.3 (17 October 2016)

Resolved issues

	Undefined warning was raised with libgmp version < 5

	Forgot inclusion of alloca.h

	Fixed a warning about type mismatch raised by recent versions of cffi

3.4.2 (8 March 2016)

Resolved issues

	Fix renaming of package for install command.

3.4.1 (21 February 2016)

New features

	Added option to install the library under the Cryptodome package
(instead of Crypto).

3.4 (7 February 2016)

New features

	Added Crypto.PublicKey.ECC module (NIST P-256 curve only), including export/import of ECC keys.

	Added support for ECDSA (FIPS 186-3 and RFC6979).

	For CBC/CFB/OFB/CTR cipher objects, encrypt() and decrypt() cannot be intermixed.

	CBC/CFB/OFB, the cipher objects have both IV and iv attributes.
new() accepts IV as well as iv as parameter.

	For CFB/OPENPGP cipher object, encrypt() and decrypt() do not require the plaintext
or ciphertext pieces to have length multiple of the CFB segment size.

	Added dedicated tests for all cipher modes, including NIST test vectors

	CTR/CCM/EAX/GCM/SIV/Salsa20/ChaCha20 objects expose the nonce attribute.

	For performance reasons, CCM cipher optionally accepted a pre-declaration of
the length of the associated data, but never checked if the actual data passed
to the cipher really matched that length. Such check is now enforced.

	CTR cipher objects accept parameter nonce and possibly initial_value in
alternative to counter (which is deprecated).

	All iv/IV and nonce parameters are optional. If not provided,
they will be randomly generated (exception: nonce for CTR mode in case
of block sizes smaller than 16 bytes).

	Refactored ARC2 cipher.

	Added Crypto.Cipher.DES3.adjust_key_parity() function.

	Added RSA.import_key as an alias to the deprecated RSA.importKey
(same for the DSA module).

	Added size_in_bits() and size_in_bytes() methods to RsaKey.

Resolved issues

	RSA key size is now returned correctly in RsaKey.__repr__() method (kudos to hannesv).

	CTR mode does not modify anymore counter parameter passed to new() method.

	CTR raises OverflowError instead of ValueError when the counter wraps around.

	PEM files with Windows newlines could not be imported.

	Crypto.IO.PEM and Crypto.IO.PKCS8 used to accept empty passphrases.

	GH#6: NotImplementedError now raised for unsupported methods sign, verify,
encrypt, decrypt, blind, unblind and size in objects RsaKey, DsaKey,
ElGamalKey.

Breaks in compatibility

	Parameter segment_size cannot be 0 for the CFB mode.

	For OCB ciphers, a final call without parameters to encrypt must end a sequence
of calls to encrypt with data (similarly for decrypt).

	Key size for ARC2, ARC4 and Blowfish must be at least 40 bits long (still very weak).

	DES3 (Triple DES module) does not allow keys that degenerate to Single DES.

	Removed method getRandomNumber in Crypto.Util.number.

	Removed module Crypto.pct_warnings.

	Removed attribute Crypto.PublicKey.RSA.algorithmIdentifier.

3.3.1 (1 November 2015)

New features

	Opt-in for update() after digest() for SHA-3, keccak, BLAKE2 hashes

Resolved issues

	Removed unused SHA-3 and keccak test vectors, therefore significantly reducing
the package from 13MB to 3MB.

Breaks in compatibility

	Removed method copy() from BLAKE2 hashes

	Removed ability to update() a BLAKE2 hash after the first call to (hex)digest()

3.3 (29 October 2015)

New features

	Windows wheels bundle the MPIR library

	Detection of faults occurring during secret RSA operations

	Detection of non-prime (weak) q value in DSA domain parameters

	Added original Keccak hash family (b=1600 only).
In the process, simplified the C code base for SHA-3.

	Added SHAKE128 and SHAKE256 (of SHA-3 family)

Resolved issues

	GH#3: gcc 4.4.7 unhappy about double typedef

Breaks in compatibility

	Removed method copy() from all SHA-3 hashes

	Removed ability to update() a SHA-3 hash after the first call to (hex)digest()

3.2.1 (9 September 2015)

New features

	Windows wheels are automatically built on Appveyor

3.2 (6 September 2015)

New features

	Added hash functions BLAKE2b and BLAKE2s.

	Added stream cipher ChaCha20.

	Added OCB cipher mode.

	CMAC raises an exception whenever the message length is found to be
too large and the chance of collisions not negligeable.

	New attribute oid for Hash objects with ASN.1 Object ID

	Added Crypto.Signature.pss and Crypto.Signature.pkcs1_15

	Added NIST test vectors (roughly 1200) for PKCS#1 v1.5 and PSS signatures.

Resolved issues

	tomcrypt_macros.h asm error #1

Breaks in compatibility

	Removed keyword verify_x509_cert from module method importKey (RSA and DSA).

	Reverted to original PyCrypto behavior of method verify in PKCS1_v1_5
and PKCS1_PSS.

3.1 (15 March 2015)

New features

	Speed up execution of Public Key algorithms on PyPy, when backed
by the Gnu Multiprecision (GMP) library.

	GMP headers and static libraries are not required anymore at the time
PyCryptodome is built. Instead, the code will automatically use the
GMP dynamic library (.so/.DLL) if found in the system at runtime.

	Reduced the amount of C code by almost 40% (4700 lines).
Modularized and simplified all code (C and Python) related to block ciphers.
Pycryptodome is now free of CPython extensions.

	Add support for CI in Windows via Appveyor.

	RSA and DSA key generation more closely follows FIPS 186-4 (though it is
not 100% compliant).

Resolved issues

	None

Breaks in compatibility

	New dependency on ctypes with Python 2.4.

	The counter parameter of a CTR mode cipher must be generated via
Crypto.Util.Counter. It cannot be a generic callable anymore.

	Removed the Crypto.Random.Fortuna package (due to lack of test vectors).

	Removed the Crypto.Hash.new function.

	The allow_wraparound parameter of Crypto.Util.Counter is ignored.
An exception is always generated if the counter is reused.

	DSA.generate, RSA.generate and ElGamal.generate do not
accept the progress_func parameter anymore.

	Removed Crypto.PublicKey.RSA.RSAImplementation.

	Removed Crypto.PublicKey.DSA.DSAImplementation.

	Removed ambiguous method size() from RSA, DSA and ElGamal keys.

3.0 (24 June 2014)

New features

	Initial support for PyPy.

	SHA-3 hash family based on the April 2014 draft of FIPS 202.
See modules Crypto.Hash.SHA3_224/256/384/512.
Initial Keccak patch by Fabrizio Tarizzo.

	Salsa20 stream cipher. See module Crypto.Cipher.Salsa20.
Patch by Fabrizio Tarizzo.

	Colin Percival’s scrypt key derivation function (Crypto.Protocol.KDF.scrypt).

	Proper interface to FIPS 186-3 DSA. See module Crypto.Signature.DSS.

	Deterministic DSA (RFC6979). Again, see Crypto.Signature.DSS.

	HMAC-based Extract-and-Expand key derivation function
(Crypto.Protocol.KDF.HKDF, RFC5869).

	Shamir’s Secret Sharing protocol, compatible with ssss (128 bits only).
See module Crypto.Protocol.SecretSharing.

	Ability to generate a DSA key given the domain parameters.

	Ability to test installation with a simple python -m Crypto.SelfTest.

Resolved issues

	LP#1193521: mpz_powm_sec() (and Python) crashed when modulus was odd.

	Benchmarks work again (they broke when ECB stopped working if
an IV was passed. Patch by Richard Mitchell.

	LP#1178485: removed some catch-all exception handlers.
Patch by Richard Mitchell.

	LP#1209399: Removal of Python wrappers caused HMAC to silently
produce the wrong data with SHA-2 algorithms.

	LP#1279231: remove dead code that does nothing in SHA-2 hashes.
Patch by Richard Mitchell.

	LP#1327081: AESNI code accesses memory beyond buffer end.

	Stricter checks on ciphertext and plaintext size for textbook RSA
(kudos to sharego).

Breaks in compatibility

	Removed support for Python < 2.4.

	Removed the following methods from all 3 public key object types (RSA, DSA, ElGamal):

	sign

	verify

	encrypt

	decrypt

	blind

	unblind

Code that uses such methods is doomed anyway. It should be fixed ASAP to
use the algorithms available in Crypto.Signature and Crypto.Cipher.

	The 3 public key object types (RSA, DSA, ElGamal) are now unpickable.

	Symmetric ciphers do not have a default mode anymore (used to be ECB).
An expression like AES.new(key) will now fail. If ECB is the desired mode,
one has to explicitly use AES.new(key, AES.MODE_ECB).

	Unsuccessful verification of a signature will now raise an exception [reverted in 3.2].

	Removed the Crypto.Random.OSRNG package.

	Removed the Crypto.Util.winrandom module.

	Removed the Crypto.Random.randpool module.

	Removed the Crypto.Cipher.XOR module.

	Removed the Crypto.Protocol.AllOrNothing module.

	Removed the Crypto.Protocol.Chaffing module.

	Removed the parameters disabled_shortcut and overflow from Crypto.Util.Counter.new.

Other changes

	Crypto.Random stops being a userspace CSPRNG. It is now a pure wrapper over os.urandom.

	Added certain resistance against side-channel attacks for GHASH (GCM) and DSA.

	More test vectors for HMAC-RIPEMD-160.

	Update libtomcrypt headers and code to v1.17 (kudos to Richard Mitchell).

	RSA and DSA keys are checked for consistency as they are imported.

	Simplified build process by removing autoconf.

	Speed optimization to PBKDF2.

	Add support for MSVC.

	Replaced HMAC code with a BSD implementation. Clarified that starting from the fork,
all contributions are released under the BSD license.

 License

License

The source code in PyCryptodome is partially in the public domain
and partially released under the BSD 2-Clause license.

In either case, there are minimal if no restrictions on the redistribution,
modification and usage of the software.

Public domain

All code originating from PyCrypto is free and unencumbered software
released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.

In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to <http://unlicense.org>

BSD license

All direct contributions to PyCryptodome are released under the following
license. The copyright of each piece belongs to the respective author.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 Crypto	

 	
 	
 Crypto.Cipher.AES	

 	
 	
 Crypto.Cipher.ARC2	

 	
 	
 Crypto.Cipher.ARC4	

 	
 	
 Crypto.Cipher.Blowfish	

 	
 	
 Crypto.Cipher.CAST	

 	
 	
 Crypto.Cipher.ChaCha20	

 	
 	
 Crypto.Cipher.ChaCha20_Poly1305	

 	
 	
 Crypto.Cipher.DES	

 	
 	
 Crypto.Cipher.DES3	

 	
 	
 Crypto.Cipher.PKCS1_OAEP	

 	
 	
 Crypto.Cipher.PKCS1_v1_5	

 	
 	
 Crypto.Cipher.Salsa20	

 	
 	
 Crypto.Hash.BLAKE2b	

 	
 	
 Crypto.Hash.BLAKE2s	

 	
 	
 Crypto.Hash.CMAC	

 	
 	
 Crypto.Hash.cSHAKE128	

 	
 	
 Crypto.Hash.cSHAKE256	

 	
 	
 Crypto.Hash.HMAC	

 	
 	
 Crypto.Hash.KangarooTwelve	

 	
 	
 Crypto.Hash.keccak	

 	
 	
 Crypto.Hash.KMAC128	

 	
 	
 Crypto.Hash.KMAC256	

 	
 	
 Crypto.Hash.MD2	

 	
 	
 Crypto.Hash.Poly1305	

 	
 	
 Crypto.Hash.RIPEMD160	

 	
 	
 Crypto.Hash.SHA224	

 	
 	
 Crypto.Hash.SHA256	

 	
 	
 Crypto.Hash.SHA384	

 	
 	
 Crypto.Hash.SHA3_224	

 	
 	
 Crypto.Hash.SHA3_256	

 	
 	
 Crypto.Hash.SHA3_384	

 	
 	
 Crypto.Hash.SHA3_512	

 	
 	
 Crypto.Hash.SHA512	

 	
 	
 Crypto.Hash.SHAKE128	

 	
 	
 Crypto.Hash.SHAKE256	

 	
 	
 Crypto.Hash.TupleHash128	

 	
 	
 Crypto.Hash.TupleHash256	

 	
 	
 Crypto.IO.PEM	

 	
 	
 Crypto.IO.PKCS8	

 	
 	
 Crypto.Protocol.SecretSharing	

 	
 	
 Crypto.PublicKey.DSA	

 	
 	
 Crypto.PublicKey.ECC	

 	
 	
 Crypto.PublicKey.ElGamal	

 	
 	
 Crypto.PublicKey.RSA	

 	
 	
 Crypto.Signature.DSS	

 	
 	
 Crypto.Signature.eddsa	

 	
 	
 Crypto.Signature.pkcs1_15	

 	
 	
 Crypto.Signature.pss	

 	
 	
 Crypto.Util.asn1	

 	
 	
 Crypto.Util.Counter	

 	
 	
 Crypto.Util.number	

 	
 	
 Crypto.Util.Padding	

 	
 	
 Crypto.Util.RFC1751	

 	
 	
 Crypto.Util.strxor	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (Crypto.Util.asn1.DerSetOf method)

 	
 	adjust_key_parity() (in module Crypto.Cipher.DES3)

 	ARC4Cipher (class in Crypto.Cipher.ARC4)

B

 	
 	bcrypt() (in module Crypto.Protocol.KDF)

 	bcrypt_check() (in module Crypto.Protocol.KDF)

 	
 	BLAKE2b_Hash (class in Crypto.Hash.BLAKE2b)

 	BLAKE2s_Hash (class in Crypto.Hash.BLAKE2s)

 	bytes_to_long() (in module Crypto.Util.number)

C

 	
 	can_decrypt() (Crypto.Cipher.PKCS1_OAEP.PKCS1OAEP_Cipher method)

 	(Crypto.Cipher.PKCS1_v1_5.PKCS115_Cipher method)

 	can_encrypt() (Crypto.Cipher.PKCS1_OAEP.PKCS1OAEP_Cipher method)

 	(Crypto.Cipher.PKCS1_v1_5.PKCS115_Cipher method)

 	can_sign() (Crypto.Signature.DSS.DssSigScheme method)

 	(Crypto.Signature.eddsa.EdDSASigScheme method)

 	(Crypto.Signature.pkcs1_15.PKCS115_SigScheme method)

 	(Crypto.Signature.pss.PSS_SigScheme method)

 	ceil_div() (in module Crypto.Util.number)

 	ChaCha20Cipher (class in Crypto.Cipher.ChaCha20)

 	ChaCha20Poly1305Cipher (class in Crypto.Cipher.ChaCha20_Poly1305)

 	CMAC (class in Crypto.Hash.CMAC)

 	combine() (Crypto.Protocol.SecretSharing.Shamir static method)

 	construct() (in module Crypto.PublicKey.DSA)

 	(in module Crypto.PublicKey.ECC)

 	(in module Crypto.PublicKey.ElGamal)

 	(in module Crypto.PublicKey.RSA)

 	copy() (Crypto.Hash.CMAC.CMAC method)

 	(Crypto.Hash.HMAC.HMAC method)

 	(Crypto.Hash.MD2.MD2Hash method)

 	(Crypto.Hash.RIPEMD160.RIPEMD160Hash method)

 	(Crypto.Hash.SHA224.SHA224Hash method)

 	(Crypto.Hash.SHA256.SHA256Hash method)

 	(Crypto.Hash.SHA384.SHA384Hash method)

 	(Crypto.Hash.SHA3_224.SHA3_224_Hash method)

 	(Crypto.Hash.SHA3_256.SHA3_256_Hash method)

 	(Crypto.Hash.SHA3_384.SHA3_384_Hash method)

 	(Crypto.Hash.SHA3_512.SHA3_512_Hash method)

 	(Crypto.Hash.SHA512.SHA512Hash method)

 	(Crypto.PublicKey.ECC.EccPoint method)

 	Crypto.Cipher.AES (module)

 	Crypto.Cipher.ARC2 (module)

 	Crypto.Cipher.ARC4 (module)

 	Crypto.Cipher.Blowfish (module)

 	Crypto.Cipher.CAST (module)

 	Crypto.Cipher.ChaCha20 (module)

 	Crypto.Cipher.ChaCha20_Poly1305 (module)

 	Crypto.Cipher.DES (module)

 	Crypto.Cipher.DES3 (module)

 	Crypto.Cipher.PKCS1_OAEP (module)

 	Crypto.Cipher.PKCS1_v1_5 (module)

 	Crypto.Cipher.Salsa20 (module)

 	Crypto.Hash.BLAKE2b (module)

 	Crypto.Hash.BLAKE2s (module)

 	Crypto.Hash.CMAC (module)

 	Crypto.Hash.cSHAKE128 (module)

 	Crypto.Hash.cSHAKE256 (module)

 	Crypto.Hash.HMAC (module)

 	
 	Crypto.Hash.KangarooTwelve (module)

 	Crypto.Hash.keccak (module)

 	Crypto.Hash.KMAC128 (module)

 	Crypto.Hash.KMAC256 (module)

 	Crypto.Hash.MD2 (module)

 	Crypto.Hash.Poly1305 (module)

 	Crypto.Hash.RIPEMD160 (module)

 	Crypto.Hash.SHA224 (module)

 	Crypto.Hash.SHA256 (module)

 	Crypto.Hash.SHA384 (module)

 	Crypto.Hash.SHA3_224 (module)

 	Crypto.Hash.SHA3_256 (module)

 	Crypto.Hash.SHA3_384 (module)

 	Crypto.Hash.SHA3_512 (module)

 	Crypto.Hash.SHA512 (module)

 	Crypto.Hash.SHAKE128 (module)

 	Crypto.Hash.SHAKE256 (module)

 	Crypto.Hash.TupleHash128 (module)

 	Crypto.Hash.TupleHash256 (module)

 	Crypto.IO.PEM (module)

 	Crypto.IO.PKCS8 (module)

 	Crypto.MD5.MD5_Hash (built-in class)

 	Crypto.MD5.new() (built-in function)

 	Crypto.Protocol.SecretSharing (module)

 	Crypto.PublicKey.DSA (module)

 	Crypto.PublicKey.ECC (module)

 	Crypto.PublicKey.ElGamal (module)

 	Crypto.PublicKey.RSA (module)

 	Crypto.Random.get_random_bytes() (built-in function)

 	Crypto.Random.random.choice() (built-in function)

 	Crypto.Random.random.getrandbits() (built-in function)

 	Crypto.Random.random.randint() (built-in function)

 	Crypto.Random.random.randrange() (built-in function)

 	Crypto.Random.random.sample() (built-in function)

 	Crypto.Random.random.shuffle() (built-in function)

 	Crypto.SHA1.new() (built-in function)

 	Crypto.SHA1.SHA1_Hash (built-in class)

 	Crypto.Signature.DSS (module)

 	Crypto.Signature.eddsa (module)

 	Crypto.Signature.pkcs1_15 (module)

 	Crypto.Signature.pss (module)

 	Crypto.Util.asn1 (module)

 	Crypto.Util.Counter (module)

 	Crypto.Util.number (module)

 	Crypto.Util.Padding (module)

 	Crypto.Util.RFC1751 (module)

 	Crypto.Util.strxor (module)

 	cSHAKE_XOF (class in Crypto.Hash.cSHAKE128)

D

 	
 	decode() (Crypto.Util.asn1.DerBitString method)

 	(Crypto.Util.asn1.DerBoolean method)

 	(Crypto.Util.asn1.DerInteger method)

 	(Crypto.Util.asn1.DerObject method)

 	(Crypto.Util.asn1.DerObjectId method)

 	(Crypto.Util.asn1.DerSequence method)

 	(Crypto.Util.asn1.DerSetOf method)

 	(in module Crypto.IO.PEM)

 	decrypt() (Crypto.Cipher.ARC4.ARC4Cipher method)

 	(Crypto.Cipher.ChaCha20.ChaCha20Cipher method)

 	(Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher method)

 	(Crypto.Cipher.PKCS1_OAEP.PKCS1OAEP_Cipher method)

 	(Crypto.Cipher.PKCS1_v1_5.PKCS115_Cipher method)

 	(Crypto.Cipher.Salsa20.Salsa20Cipher method)

 	decrypt_and_verify()

 	(Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher method)

 	DerBitString (class in Crypto.Util.asn1)

 	DerBoolean (class in Crypto.Util.asn1)

 	DerInteger (class in Crypto.Util.asn1)

 	DerNull (class in Crypto.Util.asn1)

 	DerObject (class in Crypto.Util.asn1)

 	DerObjectId (class in Crypto.Util.asn1)

 	DerOctetString (class in Crypto.Util.asn1)

 	DerSequence (class in Crypto.Util.asn1)

 	DerSetOf (class in Crypto.Util.asn1)

 	
 	digest()

 	(Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher method)

 	(Crypto.Hash.BLAKE2b.BLAKE2b_Hash method)

 	(Crypto.Hash.BLAKE2s.BLAKE2s_Hash method)

 	(Crypto.Hash.CMAC.CMAC method)

 	(Crypto.Hash.HMAC.HMAC method)

 	(Crypto.Hash.KMAC128.KMAC_Hash method)

 	(Crypto.Hash.MD2.MD2Hash method)

 	(Crypto.Hash.Poly1305.Poly1305_MAC method)

 	(Crypto.Hash.RIPEMD160.RIPEMD160Hash method)

 	(Crypto.Hash.SHA224.SHA224Hash method)

 	(Crypto.Hash.SHA256.SHA256Hash method)

 	(Crypto.Hash.SHA384.SHA384Hash method)

 	(Crypto.Hash.SHA3_224.SHA3_224_Hash method)

 	(Crypto.Hash.SHA3_256.SHA3_256_Hash method)

 	(Crypto.Hash.SHA3_384.SHA3_384_Hash method)

 	(Crypto.Hash.SHA3_512.SHA3_512_Hash method)

 	(Crypto.Hash.SHA512.SHA512Hash method)

 	(Crypto.Hash.TupleHash128.TupleHash method)

 	(Crypto.Hash.keccak.Keccak_Hash method)

 	(Crypto.MD5.MD5_Hash method)

 	(Crypto.SHA1.SHA1_Hash method)

 	domain() (Crypto.PublicKey.DSA.DsaKey method)

 	double() (Crypto.PublicKey.ECC.EccPoint method)

 	DsaKey (class in Crypto.PublicKey.DSA)

 	DssSigScheme (class in Crypto.Signature.DSS)

E

 	
 	EccKey (class in Crypto.PublicKey.ECC)

 	EccPoint (class in Crypto.PublicKey.ECC)

 	EdDSASigScheme (class in Crypto.Signature.eddsa)

 	ElGamalKey (class in Crypto.PublicKey.ElGamal)

 	encode() (Crypto.Util.asn1.DerBitString method)

 	(Crypto.Util.asn1.DerBoolean method)

 	(Crypto.Util.asn1.DerInteger method)

 	(Crypto.Util.asn1.DerObject method)

 	(Crypto.Util.asn1.DerObjectId method)

 	(Crypto.Util.asn1.DerSequence method)

 	(Crypto.Util.asn1.DerSetOf method)

 	(in module Crypto.IO.PEM)

 	encrypt() (Crypto.Cipher.ARC4.ARC4Cipher method)

 	(Crypto.Cipher.ChaCha20.ChaCha20Cipher method)

 	(Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher method)

 	(Crypto.Cipher.PKCS1_OAEP.PKCS1OAEP_Cipher method)

 	(Crypto.Cipher.PKCS1_v1_5.PKCS115_Cipher method)

 	(Crypto.Cipher.Salsa20.Salsa20Cipher method)

 	
 	encrypt_and_digest()

 	(Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher method)

 	english_to_key() (in module Crypto.Util.RFC1751)

 	export_key() (Crypto.PublicKey.DSA.DsaKey method)

 	(Crypto.PublicKey.ECC.EccKey method)

 	(Crypto.PublicKey.RSA.RsaKey method)

 	exportKey() (Crypto.PublicKey.DSA.DsaKey method)

 	(Crypto.PublicKey.RSA.RsaKey method)

G

 	
 	generate() (in module Crypto.PublicKey.DSA)

 	(in module Crypto.PublicKey.ECC)

 	(in module Crypto.PublicKey.ElGamal)

 	(in module Crypto.PublicKey.RSA)

 	
 	getPrime() (in module Crypto.Util.number)

 	getRandomInteger() (in module Crypto.Util.number)

 	getRandomNBitInteger() (in module Crypto.Util.number)

 	getRandomRange() (in module Crypto.Util.number)

 	getStrongPrime() (in module Crypto.Util.number)

H

 	
 	has_private() (Crypto.PublicKey.DSA.DsaKey method)

 	(Crypto.PublicKey.ECC.EccKey method)

 	(Crypto.PublicKey.ElGamal.ElGamalKey method)

 	(Crypto.PublicKey.RSA.RsaKey method)

 	hasInts() (Crypto.Util.asn1.DerSequence method)

 	hasOnlyInts() (Crypto.Util.asn1.DerSequence method)

 	hexdigest()

 	(Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher method)

 	(Crypto.Hash.BLAKE2b.BLAKE2b_Hash method)

 	(Crypto.Hash.BLAKE2s.BLAKE2s_Hash method)

 	(Crypto.Hash.CMAC.CMAC method)

 	(Crypto.Hash.HMAC.HMAC method)

 	(Crypto.Hash.KMAC128.KMAC_Hash method)

 	(Crypto.Hash.MD2.MD2Hash method)

 	(Crypto.Hash.Poly1305.Poly1305_MAC method)

 	(Crypto.Hash.RIPEMD160.RIPEMD160Hash method)

 	(Crypto.Hash.SHA224.SHA224Hash method)

 	(Crypto.Hash.SHA256.SHA256Hash method)

 	(Crypto.Hash.SHA384.SHA384Hash method)

 	(Crypto.Hash.SHA3_224.SHA3_224_Hash method)

 	(Crypto.Hash.SHA3_256.SHA3_256_Hash method)

 	(Crypto.Hash.SHA3_384.SHA3_384_Hash method)

 	(Crypto.Hash.SHA3_512.SHA3_512_Hash method)

 	(Crypto.Hash.SHA512.SHA512Hash method)

 	(Crypto.Hash.TupleHash128.TupleHash method)

 	(Crypto.Hash.keccak.Keccak_Hash method)

 	(Crypto.MD5.MD5_Hash method)

 	(Crypto.SHA1.SHA1_Hash method)

 	
 	hexverify()

 	(Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher method)

 	(Crypto.Hash.BLAKE2b.BLAKE2b_Hash method)

 	(Crypto.Hash.BLAKE2s.BLAKE2s_Hash method)

 	(Crypto.Hash.CMAC.CMAC method)

 	(Crypto.Hash.HMAC.HMAC method)

 	(Crypto.Hash.KMAC128.KMAC_Hash method)

 	(Crypto.Hash.Poly1305.Poly1305_MAC method)

 	HKDF() (in module Crypto.Protocol.KDF)

 	HMAC (class in Crypto.Hash.HMAC)

I

 	
 	import_key() (in module Crypto.PublicKey.DSA)

 	(in module Crypto.PublicKey.ECC)

 	(in module Crypto.PublicKey.RSA)

 	import_private_key() (in module Crypto.Signature.eddsa)

 	
 	import_public_key() (in module Crypto.Signature.eddsa)

 	inverse() (in module Crypto.Util.number)

 	is_point_at_infinity() (Crypto.PublicKey.ECC.EccPoint method)

 	isPrime() (in module Crypto.Util.number)

K

 	
 	K12_XOF (class in Crypto.Hash.KangarooTwelve)

 	Keccak_Hash (class in Crypto.Hash.keccak)

 	
 	key_to_english() (in module Crypto.Util.RFC1751)

 	KMAC_Hash (class in Crypto.Hash.KMAC128)

L

 	
 	long_to_bytes() (in module Crypto.Util.number)

M

 	
 	MD2Hash (class in Crypto.Hash.MD2)

 	MGF1() (in module Crypto.Signature.pss)

 	MODE_CBC (in module Crypto.Cipher.AES)

 	MODE_CCM (in module Crypto.Cipher.AES)

 	MODE_CFB (in module Crypto.Cipher.AES)

 	MODE_CTR (in module Crypto.Cipher.AES)

 	
 	MODE_EAX (in module Crypto.Cipher.AES)

 	MODE_ECB (in module Crypto.Cipher.AES)

 	MODE_GCM (in module Crypto.Cipher.AES)

 	MODE_OCB (in module Crypto.Cipher.AES)

 	MODE_OFB (in module Crypto.Cipher.AES)

 	MODE_OPENPGP (in module Crypto.Cipher.AES)

 	MODE_SIV (in module Crypto.Cipher.AES)

N

 	
 	new() (Crypto.Hash.BLAKE2b.BLAKE2b_Hash method)

 	(Crypto.Hash.BLAKE2s.BLAKE2s_Hash method)

 	(Crypto.Hash.KMAC128.KMAC_Hash method)

 	(Crypto.Hash.RIPEMD160.RIPEMD160Hash method)

 	(Crypto.Hash.SHA224.SHA224Hash method)

 	(Crypto.Hash.SHA256.SHA256Hash method)

 	(Crypto.Hash.SHA384.SHA384Hash method)

 	(Crypto.Hash.SHA3_224.SHA3_224_Hash method)

 	(Crypto.Hash.SHA3_256.SHA3_256_Hash method)

 	(Crypto.Hash.SHA3_384.SHA3_384_Hash method)

 	(Crypto.Hash.SHA3_512.SHA3_512_Hash method)

 	(Crypto.Hash.SHA512.SHA512Hash method)

 	(Crypto.Hash.TupleHash128.TupleHash method)

 	(Crypto.Hash.keccak.Keccak_Hash method)

 	(in module Crypto.Cipher.AES)

 	(in module Crypto.Cipher.ARC2)

 	(in module Crypto.Cipher.ARC4)

 	(in module Crypto.Cipher.Blowfish)

 	(in module Crypto.Cipher.CAST)

 	(in module Crypto.Cipher.ChaCha20)

 	(in module Crypto.Cipher.ChaCha20_Poly1305)

 	(in module Crypto.Cipher.DES)

 	(in module Crypto.Cipher.DES3)

 	(in module Crypto.Cipher.PKCS1_OAEP)

 	(in module Crypto.Cipher.PKCS1_v1_5)

 	(in module Crypto.Cipher.Salsa20)

 	(in module Crypto.Hash.BLAKE2b)

 	(in module Crypto.Hash.BLAKE2s)

 	(in module Crypto.Hash.CMAC)

 	(in module Crypto.Hash.HMAC)

 	(in module Crypto.Hash.KMAC128)

 	(in module Crypto.Hash.KMAC256)

 	(in module Crypto.Hash.KangarooTwelve)

 	(in module Crypto.Hash.MD2)

 	(in module Crypto.Hash.Poly1305)

 	(in module Crypto.Hash.RIPEMD160)

 	(in module Crypto.Hash.SHA224)

 	(in module Crypto.Hash.SHA256)

 	(in module Crypto.Hash.SHA384)

 	(in module Crypto.Hash.SHA3_224)

 	(in module Crypto.Hash.SHA3_256)

 	(in module Crypto.Hash.SHA3_384)

 	(in module Crypto.Hash.SHA3_512)

 	(in module Crypto.Hash.SHA512)

 	(in module Crypto.Hash.SHAKE128)

 	(in module Crypto.Hash.SHAKE256)

 	(in module Crypto.Hash.TupleHash128)

 	(in module Crypto.Hash.TupleHash256)

 	(in module Crypto.Hash.cSHAKE128)

 	(in module Crypto.Hash.cSHAKE256)

 	(in module Crypto.Hash.keccak)

 	(in module Crypto.Signature.DSS)

 	(in module Crypto.Signature.eddsa)

 	(in module Crypto.Signature.pkcs1_15)

 	(in module Crypto.Signature.pss)

 	(in module Crypto.Util.Counter)

O

 	
 	oid (in module Crypto.PublicKey.RSA)

P

 	
 	pad() (in module Crypto.Util.Padding)

 	PBKDF1() (in module Crypto.Protocol.KDF)

 	PBKDF2() (in module Crypto.Protocol.KDF)

 	PKCS115_Cipher (class in Crypto.Cipher.PKCS1_v1_5)

 	PKCS115_SigScheme (class in Crypto.Signature.pkcs1_15)

 	PKCS1OAEP_Cipher (class in Crypto.Cipher.PKCS1_OAEP)

 	point_at_infinity() (Crypto.PublicKey.ECC.EccPoint method)

 	
 	Poly1305_MAC (class in Crypto.Hash.Poly1305)

 	PSS_SigScheme (class in Crypto.Signature.pss)

 	public_key() (Crypto.PublicKey.DSA.DsaKey method)

 	(Crypto.PublicKey.ECC.EccKey method)

 	(Crypto.PublicKey.RSA.RsaKey method)

 	publickey() (Crypto.PublicKey.DSA.DsaKey method)

 	(Crypto.PublicKey.ElGamal.ElGamalKey method)

 	(Crypto.PublicKey.RSA.RsaKey method)

R

 	
 	read() (Crypto.Hash.cSHAKE128.cSHAKE_XOF method)

 	(Crypto.Hash.KangarooTwelve.K12_XOF method)

 	(Crypto.Hash.SHAKE128.SHAKE128_XOF method)

 	(Crypto.Hash.SHAKE256.SHAKE256_XOF method)

 	
 	RIPEMD160Hash (class in Crypto.Hash.RIPEMD160)

 	RsaKey (class in Crypto.PublicKey.RSA)

S

 	
 	Salsa20Cipher (class in Crypto.Cipher.Salsa20)

 	scrypt() (in module Crypto.Protocol.KDF)

 	seek() (Crypto.Cipher.ChaCha20.ChaCha20Cipher method)

 	SHA224Hash (class in Crypto.Hash.SHA224)

 	SHA256Hash (class in Crypto.Hash.SHA256)

 	SHA384Hash (class in Crypto.Hash.SHA384)

 	SHA3_224_Hash (class in Crypto.Hash.SHA3_224)

 	SHA3_256_Hash (class in Crypto.Hash.SHA3_256)

 	SHA3_384_Hash (class in Crypto.Hash.SHA3_384)

 	SHA3_512_Hash (class in Crypto.Hash.SHA3_512)

 	SHA512Hash (class in Crypto.Hash.SHA512)

 	SHAKE128_XOF (class in Crypto.Hash.SHAKE128)

 	SHAKE256_XOF (class in Crypto.Hash.SHAKE256)

 	
 	Shamir (class in Crypto.Protocol.SecretSharing)

 	sign() (Crypto.Signature.DSS.DssSigScheme method)

 	(Crypto.Signature.eddsa.EdDSASigScheme method)

 	(Crypto.Signature.pkcs1_15.PKCS115_SigScheme method)

 	(Crypto.Signature.pss.PSS_SigScheme method)

 	size() (in module Crypto.Util.number)

 	size_in_bits() (Crypto.PublicKey.ECC.EccPoint method)

 	(Crypto.PublicKey.RSA.RsaKey method)

 	size_in_bytes() (Crypto.PublicKey.ECC.EccPoint method)

 	(Crypto.PublicKey.RSA.RsaKey method)

 	SP800_108_Counter() (in module Crypto.Protocol.KDF)

 	split() (Crypto.Protocol.SecretSharing.Shamir static method)

 	strxor() (in module Crypto.Util.strxor)

 	strxor_c() (in module Crypto.Util.strxor)

T

 	
 	TupleHash (class in Crypto.Hash.TupleHash128)

U

 	
 	unpad() (in module Crypto.Util.Padding)

 	UnsupportedEccFeature

 	unwrap() (in module Crypto.IO.PKCS8)

 	update()

 	(Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher method)

 	(Crypto.Hash.BLAKE2b.BLAKE2b_Hash method)

 	(Crypto.Hash.BLAKE2s.BLAKE2s_Hash method)

 	(Crypto.Hash.CMAC.CMAC method)

 	(Crypto.Hash.HMAC.HMAC method)

 	(Crypto.Hash.KMAC128.KMAC_Hash method)

 	(Crypto.Hash.KangarooTwelve.K12_XOF method)

 	(Crypto.Hash.MD2.MD2Hash method)

 	(Crypto.Hash.Poly1305.Poly1305_MAC method)

 	(Crypto.Hash.RIPEMD160.RIPEMD160Hash method)

 	(Crypto.Hash.SHA224.SHA224Hash method)

 	(Crypto.Hash.SHA256.SHA256Hash method)

 	(Crypto.Hash.SHA384.SHA384Hash method)

 	(Crypto.Hash.SHA3_224.SHA3_224_Hash method)

 	(Crypto.Hash.SHA3_256.SHA3_256_Hash method)

 	(Crypto.Hash.SHA3_384.SHA3_384_Hash method)

 	(Crypto.Hash.SHA3_512.SHA3_512_Hash method)

 	(Crypto.Hash.SHA512.SHA512Hash method)

 	(Crypto.Hash.SHAKE128.SHAKE128_XOF method)

 	(Crypto.Hash.SHAKE256.SHAKE256_XOF method)

 	(Crypto.Hash.TupleHash128.TupleHash method)

 	(Crypto.Hash.cSHAKE128.cSHAKE_XOF method)

 	(Crypto.Hash.keccak.Keccak_Hash method)

 	(Crypto.MD5.MD5_Hash method)

 	(Crypto.SHA1.SHA1_Hash method)

V

 	
 	verify()

 	(Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher method)

 	(Crypto.Hash.BLAKE2b.BLAKE2b_Hash method)

 	(Crypto.Hash.BLAKE2s.BLAKE2s_Hash method)

 	(Crypto.Hash.CMAC.CMAC method)

 	(Crypto.Hash.HMAC.HMAC method)

 	(Crypto.Hash.KMAC128.KMAC_Hash method)

 	(Crypto.Hash.Poly1305.Poly1305_MAC method)

 	(Crypto.Signature.DSS.DssSigScheme method)

 	(Crypto.Signature.eddsa.EdDSASigScheme method)

 	(Crypto.Signature.pkcs1_15.PKCS115_SigScheme method)

 	(Crypto.Signature.pss.PSS_SigScheme method)

W

 	
 	wrap() (in module Crypto.IO.PKCS8)

 Crypto.PublicKey package

Crypto.PublicKey package

Hello

 AES

AES

AES (Advanced Encryption Standard) [http://en.wikipedia.org/wiki/Advanced_Encryption_Standard] is a symmetric block cipher standardized
by NIST [http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf] . It has a fixed data block size of 16 bytes.
Its keys can be 128, 192, or 256 bits long.

AES is very fast and secure, and it is the de facto standard for symmetric
encryption.

As an example, encryption can be done as follows:

>>> from Crypto.Cipher import AES
>>>
>>> key = b'Sixteen byte key'
>>> cipher = AES.new(key, AES.MODE_EAX)
>>>
>>> nonce = cipher.nonce
>>> ciphertext, tag = cipher.encrypt_and_digest(data)

The recipient can obtain the original message using the same key
and the incoming triple (nonce, ciphertext, tag):

>>> from Crypto.Cipher import AES
>>>
>>> key = b'Sixteen byte key'
>>> cipher = AES.new(key, AES.MODE_EAX, nonce=nonce)
>>> plaintext = cipher.decrypt(ciphertext)
>>> try:
>>> cipher.verify(tag)
>>> print("The message is authentic:", plaintext)
>>> except ValueError:
>>> print("Key incorrect or message corrupted")

Constants for the modes of operation supported with AES (mode parameter):

	
Crypto.Cipher.AES.MODE_ECB = 1

	Electronic Code Book (ECB mode)

	
Crypto.Cipher.AES.MODE_CBC = 2

	Cipher-Block Chaining (CBC mode)

	
Crypto.Cipher.AES.MODE_CFB = 3

	Cipher Feedback (CFB mode)

	
Crypto.Cipher.AES.MODE_OFB = 5

	Output Feedback (OFB mode)

	
Crypto.Cipher.AES.MODE_CTR = 6

	Counter mode (CTR mode)

	
Crypto.Cipher.AES.MODE_OPENPGP = 7

	OpenPGP mode (OpenPGP mode)

	
Crypto.Cipher.AES.MODE_CCM = 8

	Counter with CBC-MAC (CCM mode)

	
Crypto.Cipher.AES.MODE_EAX = 9

	EAX mode

	
Crypto.Cipher.AES.MODE_SIV = 10

	Synthetic Initialization Vector (SIV mode)

	
Crypto.Cipher.AES.MODE_GCM = 11

	Galois Counter Mode (GCM mode)

	
Crypto.Cipher.AES.MODE_OCB = 12

	Offset Code Book (OCB mode)

	
Crypto.Cipher.AES.new(key, mode, *args, **kwargs)

	Create a new AES cipher.

	Parameters

	
	key (bytes/bytearray/memoryview) – The secret key to use in the symmetric cipher.

It must be 16 (AES-128), 24 (AES-192) or 32 (AES-256) bytes long.

For MODE_SIV only, it doubles to 32, 48, or 64 bytes.

	mode (a MODE_* constant) – The chaining mode to use for encryption or decryption.
If in doubt, use MODE_EAX.

	Keyword Arguments

	
	iv (bytes/bytearray/memoryview) – (Only applicable for MODE_CBC, MODE_CFB, MODE_OFB,
and MODE_OPENPGP modes).

The initialization vector to use for encryption or decryption.

For MODE_CBC, MODE_CFB, and MODE_OFB it must be 16 bytes long.

For MODE_OPENPGP mode only,
it must be 16 bytes long for encryption
and 18 bytes for decryption (in the latter case, it is
actually the encrypted IV which was prefixed to the ciphertext).

If not provided, a random byte string is generated (you must then
read its value with the iv attribute).

	nonce (bytes/bytearray/memoryview) – (Only applicable for MODE_CCM, MODE_EAX, MODE_GCM,
MODE_SIV, MODE_OCB, and MODE_CTR).

A value that must never be reused for any other encryption done
with this key (except possibly for MODE_SIV, see below).

For MODE_EAX, MODE_GCM and MODE_SIV there are no
restrictions on its length (recommended: 16 bytes).

For MODE_CCM, its length must be in the range [7..13].
Bear in mind that with CCM there is a trade-off between nonce
length and maximum message size. Recommendation: 11 bytes.

For MODE_OCB, its length must be in the range [1..15]
(recommended: 15).

For MODE_CTR, its length must be in the range [0..15]
(recommended: 8).

For MODE_SIV, the nonce is optional, if it is not specified,
then no nonce is being used, which renders the encryption
deterministic.

If not provided, for modes other than MODE_SIV, a random
byte string of the recommended length is used (you must then
read its value with the nonce attribute).

	segment_size (integer) – (Only MODE_CFB).The number of bits the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.

	mac_len (integer) – (Only MODE_EAX, MODE_GCM, MODE_OCB, MODE_CCM)
Length of the authentication tag, in bytes.

It must be even and in the range [4..16].
The recommended value (and the default, if not specified) is 16.

	msg_len (integer) – (Only MODE_CCM). Length of the message to (de)cipher.
If not specified, encrypt must be called with the entire message.
Similarly, decrypt can only be called once.

	assoc_len (integer) – (Only MODE_CCM). Length of the associated data.
If not specified, all associated data is buffered internally,
which may represent a problem for very large messages.

	initial_value (integer or bytes/bytearray/memoryview) – (Only MODE_CTR).
The initial value for the counter. If not present, the cipher will
start counting from 0. The value is incremented by one for each block.
The counter number is encoded in big endian mode.

	counter (object) – (Only MODE_CTR).
Instance of Crypto.Util.Counter, which allows full customization
of the counter block. This parameter is incompatible to both nonce
and initial_value.

	use_aesni – (boolean):
Use Intel AES-NI hardware extensions (default: use if available).

	Returns

	an AES object, of the applicable mode.

 RC2

RC2

Warning

Use AES instead. This module is provided only for legacy purposes.

RC2 [http://en.wikipedia.org/wiki/RC2] (Rivest’s Cipher version 2) is a symmetric block cipher designed
by Ron Rivest in 1987. The cipher started as a proprietary design,
that was reverse engineered and anonymously posted on Usenet in 1996.
For this reason, the algorithm was first called Alleged RC2 (ARC2),
since the company that owned RC2 (RSA Data Inc.) did not confirm whether
the details leaked into public domain were really correct.

The company eventually published its full specification in RFC2268 [http://tools.ietf.org/html/rfc2268].

RC2 has a fixed data block size of 8 bytes. Length of its keys can vary from
8 to 128 bits. One particular property of RC2 is that the actual
cryptographic strength of the key (effective key length) can be reduced
via a parameter.

Even though RC2 is not cryptographically broken, it has not been analyzed as
thoroughly as AES, which is also faster than RC2.

As an example, encryption can be done as follows:

>>> from Crypto.Cipher import ARC2
>>>
>>> key = b'Sixteen byte key'
>>> cipher = ARC2.new(key, ARC2.MODE_CFB)
>>> msg = cipher.iv + cipher.encrypt(b'Attack at dawn')

Module’s constants for the modes of operation supported with ARC2:

	var MODE_ECB

	Electronic Code Book (ECB)

	var MODE_CBC

	Cipher-Block Chaining (CBC)

	var MODE_CFB

	Cipher FeedBack (CFB)

	var MODE_OFB

	Output FeedBack (OFB)

	var MODE_CTR

	CounTer Mode (CTR)

	var MODE_OPENPGP

	OpenPGP Mode

	var MODE_EAX

	EAX Mode

	
Crypto.Cipher.ARC2.new(key, mode, *args, **kwargs)

	Create a new RC2 cipher.

	Parameters

	
	key (bytes, bytearray, memoryview) – The secret key to use in the symmetric cipher.
Its length can vary from 5 to 128 bytes; the actual search space
(and the cipher strength) can be reduced with the effective_keylen parameter.

	mode (One of the supported MODE_* constants) – The chaining mode to use for encryption or decryption.

	Keyword Arguments

	
	iv (bytes, bytearray, memoryview) –
(Only applicable for MODE_CBC, MODE_CFB, MODE_OFB,
and MODE_OPENPGP modes).

The initialization vector to use for encryption or decryption.

For MODE_CBC, MODE_CFB, and MODE_OFB it must be 8 bytes long.

For MODE_OPENPGP mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the encrypted IV which was prefixed to the ciphertext).

If not provided, a random byte string is generated (you must then
read its value with the iv attribute).

	nonce (bytes, bytearray, memoryview) –
(Only applicable for MODE_EAX and MODE_CTR).

A value that must never be reused for any other encryption done
with this key.

For MODE_EAX there are no
restrictions on its length (recommended: 16 bytes).

For MODE_CTR, its length must be in the range [0..7].

If not provided for MODE_EAX, a random byte string is generated (you
can read it back via the nonce attribute).

	effective_keylen (integer) –
Optional. Maximum strength in bits of the actual key used by the ARC2 algorithm.
If the supplied key parameter is longer (in bits) of the value specified
here, it will be weakened to match it.
If not specified, no limitation is applied.

	segment_size (integer) –
(Only MODE_CFB).The number of bits the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.

	mac_len : (integer) –
(Only MODE_EAX)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).

	initial_value : (integer) –
(Only MODE_CTR). The initial value for the counter within
the counter block. By default it is 0.

	Return

	an ARC2 object, of the applicable mode.

 ARC4

ARC4

Warning

ARC4 is not secure.
Use ChaCha20-Poly1305 and XChaCha20-Poly1305 or AES (AEX or GCM mode) instead.
This module is provided only for legacy purposes.

ARC4 [http://en.wikipedia.org/wiki/RC4] (Alleged RC4) is an implementation of RC4 (Rivest’s Cipher version 4),
a symmetric stream cipher designed by Ron Rivest in 1987.

The cipher started as a proprietary design, that was reverse engineered and
anonymously posted on Usenet in 1994. The company that owns RC4 (RSA Data
Inc.) never confirmed the correctness of the leaked algorithm.

Unlike RC2, the company has never published the full specification of RC4,
of which it still holds the trademark.

ARC4 keys can vary in length from 8 to 2048 bits.

One problem of ARC4 is that it does not take a nonce or an IV.
If it is required to encrypt multiple messages with the same long-term key, a
distinct independent nonce must be created for each message, and a short-term
key must be derived from the combination of the long-term key and the nonce.
Due to the weak key scheduling algorithm of ARC4, the combination must be
carried out with a complex function (e.g. a cryptographic hash) and not by
simply concatenating key and nonce.

As an example, encryption can be done as follows:

>>> from Crypto.Cipher import ARC4
>>> from Crypto.Hash import SHA256, HMAC
>>> from Crypto.Random import get_random_bytes
>>>
>>> key = b'Very long and confidential key'
>>> nonce = get_random_bytes(16)
>>> tempkey = HMAC.new(key, nonce, digestmod=SHA256).digest()
>>> cipher = ARC4.new(tempkey)
>>> msg = nonce + cipher.encrypt(b'Open the pod bay doors, HAL')

	
class Crypto.Cipher.ARC4.ARC4Cipher(key, *args, **kwargs)

	ARC4 cipher object. Do not create it directly. Use
Crypto.Cipher.ARC4.new() instead.

	
decrypt(ciphertext)

	Decrypt a piece of data.

	Parameters

	ciphertext (bytes, bytearray, memoryview) – The data to decrypt, of any size.

	Returns

	the decrypted byte string, of equal length as the
ciphertext.

	
encrypt(plaintext)

	Encrypt a piece of data.

	Parameters

	plaintext (bytes, bytearray, memoryview) – The data to encrypt, of any size.

	Returns

	the encrypted byte string, of equal length as the
plaintext.

	
Crypto.Cipher.ARC4.new(key, *args, **kwargs)

	Create a new ARC4 cipher.

	Parameters

	key (bytes, bytearray, memoryview) – The secret key to use in the symmetric cipher.
Its length must be in the range [1..256].
The recommended length is 16 bytes.

	Keyword Arguments

	
	drop (integer) –
The amount of bytes to discard from the initial part of the keystream.
In fact, such part has been found to be distinguishable from random
data (while it shouldn’t) and also correlated to key.

The recommended value is 3072 [http://eprint.iacr.org/2002/067.pdf] bytes. The default value is 0.

	Return

	an ARC4Cipher object

 Blowfish

Blowfish

Warning

Use AES. This module is provided only for legacy purposes.

Blowfish [http://www.schneier.com/blowfish.html] is a symmetric block cipher designed by Bruce Schneier.

It has a fixed data block size of 8 bytes and its keys can vary in length
from 32 to 448 bits (4 to 56 bytes).

Blowfish is deemed secure and it is fast. However, its keys should be chosen
to be big enough to withstand a brute force attack (e.g. at least 16 bytes).

As an example, encryption can be done as follows:

>>> from Crypto.Cipher import Blowfish
>>> from struct import pack
>>>
>>> bs = Blowfish.block_size
>>> key = b'An arbitrarily long key'
>>> cipher = Blowfish.new(key, Blowfish.MODE_CBC)
>>> plaintext = b'docendo discimus '
>>> plen = bs - len(plaintext) % bs
>>> padding = [plen]*plen
>>> padding = pack('b'*plen, *padding)
>>> msg = cipher.iv + cipher.encrypt(plaintext + padding)

Module’s constants for the modes of operation supported with Blowfish:

	var MODE_ECB

	Electronic Code Book (ECB)

	var MODE_CBC

	Cipher-Block Chaining (CBC)

	var MODE_CFB

	Cipher FeedBack (CFB)

	var MODE_OFB

	Output FeedBack (OFB)

	var MODE_CTR

	CounTer Mode (CTR)

	var MODE_OPENPGP

	OpenPGP Mode

	var MODE_EAX

	EAX Mode

	
Crypto.Cipher.Blowfish.new(key, mode, *args, **kwargs)

	Create a new Blowfish cipher

	Parameters

	
	key (bytes, bytearray, memoryview) – The secret key to use in the symmetric cipher.
Its length can vary from 5 to 56 bytes.

	mode (One of the supported MODE_* constants) – The chaining mode to use for encryption or decryption.

	Keyword Arguments

	
	iv (bytes, bytearray, memoryview) –
(Only applicable for MODE_CBC, MODE_CFB, MODE_OFB,
and MODE_OPENPGP modes).

The initialization vector to use for encryption or decryption.

For MODE_CBC, MODE_CFB, and MODE_OFB it must be 8 bytes long.

For MODE_OPENPGP mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the encrypted IV which was prefixed to the ciphertext).

If not provided, a random byte string is generated (you must then
read its value with the iv attribute).

	nonce (bytes, bytearray, memoryview) –
(Only applicable for MODE_EAX and MODE_CTR).

A value that must never be reused for any other encryption done
with this key.

For MODE_EAX there are no
restrictions on its length (recommended: 16 bytes).

For MODE_CTR, its length must be in the range [0..7].

If not provided for MODE_EAX, a random byte string is generated (you
can read it back via the nonce attribute).

	segment_size (integer) –
(Only MODE_CFB).The number of bits the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.

	mac_len : (integer) –
(Only MODE_EAX)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).

	initial_value : (integer) –
(Only MODE_CTR). The initial value for the counter within
the counter block. By default it is 0.

	Return

	a Blowfish object, of the applicable mode.

 CAST-128

CAST-128

Warning

Use AES. This module is provided only for legacy purposes.

CAST-128 [http://en.wikipedia.org/wiki/CAST-128] (or CAST5) is a symmetric block cipher specified in RFC2144 [http://tools.ietf.org/html/rfc2144].

It has a fixed data block size of 8 bytes. Its key can vary in length
from 40 to 128 bits.

CAST is deemed to be cryptographically secure, but its usage is not widespread.
Keys of sufficient length should be used to prevent brute force attacks
(128 bits are recommended).

As an example, encryption can be done as follows:

>>> from Crypto.Cipher import CAST
>>>
>>> key = b'Sixteen byte key'
>>> cipher = CAST.new(key, CAST.MODE_OPENPGP)
>>> plaintext = b'sona si latine loqueris '
>>> msg = cipher.encrypt(plaintext)
>>>
...
>>> eiv = msg[:CAST.block_size+2]
>>> ciphertext = msg[CAST.block_size+2:]
>>> cipher = CAST.new(key, CAST.MODE_OPENPGP, eiv)
>>> print cipher.decrypt(ciphertext)

Module’s constants for the modes of operation supported with CAST:

	var MODE_ECB

	Electronic Code Book (ECB)

	var MODE_CBC

	Cipher-Block Chaining (CBC)

	var MODE_CFB

	Cipher FeedBack (CFB)

	var MODE_OFB

	Output FeedBack (OFB)

	var MODE_CTR

	CounTer Mode (CTR)

	var MODE_OPENPGP

	OpenPGP Mode

	var MODE_EAX

	EAX Mode

	
Crypto.Cipher.CAST.new(key, mode, *args, **kwargs)

	Create a new CAST cipher

	Parameters

	
	key (bytes, bytearray, memoryview) – The secret key to use in the symmetric cipher.
Its length can vary from 5 to 16 bytes.

	mode (One of the supported MODE_* constants) – The chaining mode to use for encryption or decryption.

	Keyword Arguments

	
	iv (bytes, bytearray, memoryview) –
(Only applicable for MODE_CBC, MODE_CFB, MODE_OFB,
and MODE_OPENPGP modes).

The initialization vector to use for encryption or decryption.

For MODE_CBC, MODE_CFB, and MODE_OFB it must be 8 bytes long.

For MODE_OPENPGP mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the encrypted IV which was prefixed to the ciphertext).

If not provided, a random byte string is generated (you must then
read its value with the iv attribute).

	nonce (bytes, bytearray, memoryview) –
(Only applicable for MODE_EAX and MODE_CTR).

A value that must never be reused for any other encryption done
with this key.

For MODE_EAX there are no
restrictions on its length (recommended: 16 bytes).

For MODE_CTR, its length must be in the range [0..7].

If not provided for MODE_EAX, a random byte string is generated (you
can read it back via the nonce attribute).

	segment_size (integer) –
(Only MODE_CFB).The number of bits the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.

	mac_len : (integer) –
(Only MODE_EAX)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).

	initial_value : (integer) –
(Only MODE_CTR). The initial value for the counter within
the counter block. By default it is 0.

	Return

	a CAST object, of the applicable mode.

 ChaCha20 and XChaCha20

ChaCha20 and XChaCha20

ChaCha20 [https://cr.yp.to/chacha.html] is a stream cipher designed by Daniel J. Bernstein.
The secret key is 256 bits long (32 bytes).
The cipher requires a nonce, which must not be reused
across encryptions performed with the same key.

There are three variants, defined by the length of the nonce:

	Nonce length

	Description

	Max data

	If random nonce and same key

	8 bytes (default)

	The original ChaCha20 designed by Bernstein.

	No limitations

	Max 200 000 messages

	12 bytes

	The TLS ChaCha20 as defined in RFC7539 [https://tools.ietf.org/html/rfc7539].

	256 GB

	Max 13 billions messages

	24 bytes

	XChaCha20, still in draft stage [https://tools.ietf.org/html/draft-arciszewski-xchacha-03].

	256 GB

	No limitations

This is an example of how ChaCha20 [https://cr.yp.to/chacha.html] (Bernstein’s version) can encrypt data:

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import ChaCha20
>>> from Crypto.Random import get_random_bytes
>>>
>>> plaintext = b'Attack at dawn'
>>> key = get_random_bytes(32)
>>> cipher = ChaCha20.new(key=key)
>>> ciphertext = cipher.encrypt(plaintext)
>>>
>>> nonce = b64encode(cipher.nonce).decode('utf-8')
>>> ct = b64encode(ciphertext).decode('utf-8')
>>> result = json.dumps({'nonce':nonce, 'ciphertext':ct})
>>> print(result)
{"nonce": "IZScZh28fDo=", "ciphertext": "ZatgU1f30WDHriaN8ts="}

And this is how you decrypt it:

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import ChaCha20
>>>
>>> # We assume that the key was somehow securely shared
>>> try:
>>> b64 = json.loads(json_input)
>>> nonce = b64decode(b64['nonce'])
>>> ciphertext = b64decode(b64['ciphertext'])
>>> cipher = ChaCha20.new(key=key, nonce=nonce)
>>> plaintext = cipher.decrypt(ciphertext)
>>> print("The message was " + plaintext)
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

In order to have a RFC7539 [https://tools.ietf.org/html/rfc7539]-compliant ChaCha20 cipher,
you need to explicitly generate and pass a 96 bit (12 byte) nonce parameter to new():

nonce_rfc7539 = get_random_bytes(12)
cipher = ChaCha20.new(key=key, nonce=nonce_rfc7539)

Warning

ChaCha20 does not guarantee authenticity of the data you decrypt!
In other words, an attacker may manipulate the data in transit.
In order to prevent that, you must also use a Message Authentication
Code (such as HMAC) to authenticate the ciphertext
(encrypt-then-mac). Alternatively, you can use ChaCha20_Poly1305.

	
class Crypto.Cipher.ChaCha20.ChaCha20Cipher(key, nonce)

	ChaCha20 (or XChaCha20) cipher object.
Do not create it directly. Use new() instead.

	Variables

	nonce (bytes) – The nonce with length 8, 12 or 24 bytes

	
decrypt(ciphertext, output=None)

	Decrypt a piece of data.

	Parameters

	ciphertext (bytes/bytearray/memoryview) – The data to decrypt, of any size.

	Keyword Arguments

	output (bytes/bytearray/memoryview) – The location where the plaintext
is written to. If None, the plaintext is returned.

	Returns

	If output is None, the plaintext is returned as bytes.
Otherwise, None.

	
encrypt(plaintext, output=None)

	Encrypt a piece of data.

	Parameters

	plaintext (bytes/bytearray/memoryview) – The data to encrypt, of any size.

	Keyword Arguments

	output (bytes/bytearray/memoryview) – The location where the ciphertext
is written to. If None, the ciphertext is returned.

	Returns

	If output is None, the ciphertext is returned as bytes.
Otherwise, None.

	
seek(position)

	Seek to a certain position in the key stream.

	Parameters

	position (integer) – The absolute position within the key stream, in bytes.

	
Crypto.Cipher.ChaCha20.new(**kwargs)

	Create a new ChaCha20 or XChaCha20 cipher

	Keyword Arguments

	
	key (bytes/bytearray/memoryview) – The secret key to use.
It must be 32 bytes long.

	nonce (bytes/bytearray/memoryview) – A mandatory value that
must never be reused for any other encryption
done with this key.

For ChaCha20, it must be 8 or 12 bytes long.

For XChaCha20, it must be 24 bytes long.

If not provided, 8 bytes will be randomly generated
(you can find them back in the nonce attribute).

	Return

	a Crypto.Cipher.ChaCha20.ChaCha20Cipher object

 ChaCha20-Poly1305 and XChaCha20-Poly1305

ChaCha20-Poly1305 and XChaCha20-Poly1305

ChaCha20-Poly1305 is an authenticated cipher with associated data (AEAD).
It works with a 32 byte secret key and a nonce
which must never be reused across encryptions performed under the same key.
The cipher produces a 16 byte tag that the receiver must use to validate the message.

There are three variants of the algorithm, defined by the length of the nonce:

	Nonce length

	Description

	Max plaintext

	If random nonce and same key

	8 bytes

	Based on Bernstein’s original ChaCha20.

	No limitations

	Max 200 000 messages

	12 bytes (default)

	Version used in TLS and specified in RFC7539 [https://tools.ietf.org/html/rfc7539].

	256 GB

	Max 13 billion messages

	24 bytes

	XChaCha20-Poly1305, still in draft stage [https://tools.ietf.org/html/draft-arciszewski-xchacha-03].

	256 GB

	No limitations

The API of the cipher and its finite state machine are the same as for the modern modes of operation of block ciphers.

You create a new cipher by calling Crypto.Cipher.ChaCha20_Poly1305.new().

This is an example of how ChaCha20-Poly1305 (TLS version) can encrypt and authenticate data:

>>> import json
>>> from base64 import b64encode
>>> from Crypto.Cipher import ChaCha20_Poly1305
>>> from Crypto.Random import get_random_bytes
>>>
>>> header = b"header"
>>> plaintext = b'Attack at dawn'
>>> key = get_random_bytes(32)
>>> cipher = ChaCha20_Poly1305.new(key=key)
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(plaintext)
>>>
>>> jk = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = [b64encode(x).decode('utf-8') for x in (cipher.nonce, header, ciphertext, tag)]
>>> result = json.dumps(dict(zip(jk, jv)))
>>> print(result)
{"nonce": "4EE/9uqhoZ3mQXmm", "header": "aGVhZGVy", "ciphertext": "Wmmo4Vzn+eS3tUPv2a8=", "tag": "/FgVbM8qhzssPRY80T0iVA=="}

In the example above, a 96 bit (12 byte) nonce is automatically created.
It can be accessed as the nonce member in the cipher object.

This is how you decrypt the data and check its authenticity:

>>> import json
>>> from base64 import b64decode
>>> from Crypto.Cipher import ChaCha20_Poly1305
>>>
>>> # We assume that the key was securely shared beforehand
>>> try:
>>> b64 = json.loads(json_input)
>>> jk = ['nonce', 'header', 'ciphertext', 'tag']
>>> jv = {k:b64decode(b64[k]) for k in jk}
>>>
>>> cipher = ChaCha20_Poly1305.new(key=key, nonce=jv['nonce'])
>>> cipher.update(jv['header'])
>>> plaintext = cipher.decrypt_and_verify(jv['ciphertext'], jv['tag'])
>>> print("The message was: " + plaintext)
>>> except (ValueError, KeyError):
>>> print("Incorrect decryption")

	
class Crypto.Cipher.ChaCha20_Poly1305.ChaCha20Poly1305Cipher(key, nonce)

	ChaCha20-Poly1305 and XChaCha20-Poly1305 cipher object.
Do not create it directly. Use new() instead.

	Variables

	nonce (byte string) – The nonce with length 8, 12 or 24 bytes

	
decrypt(ciphertext, output=None)

	Decrypt a piece of data.

	Parameters

	ciphertext (bytes/bytearray/memoryview) – The data to decrypt, of any size.

	Keyword Arguments

	output (bytes/bytearray/memoryview) – The location where the plaintext
is written to. If None, the plaintext is returned.

	Returns

	If output is None, the plaintext is returned as bytes.
Otherwise, None.

	
decrypt_and_verify(ciphertext, received_mac_tag)

	Perform decrypt() and verify() in one step.

	Parameters

	
	ciphertext (bytes/bytearray/memoryview) – The piece of data to decrypt.

	received_mac_tag (bytes) – This is the 16-byte binary MAC, as received from the sender.

	Returns

	the decrypted data (as bytes)

	Raises

	ValueError – if the MAC does not match. The message has been tampered with
or the key is incorrect.

	
digest()

	Compute the binary authentication tag (MAC).

	Return

	the MAC tag, as 16 bytes.

	
encrypt(plaintext, output=None)

	Encrypt a piece of data.

	Parameters

	plaintext (bytes/bytearray/memoryview) – The data to encrypt, of any size.

	Keyword Arguments

	output (bytes/bytearray/memoryview) – The location where the ciphertext
is written to. If None, the ciphertext is returned.

	Returns

	If output is None, the ciphertext is returned as bytes.
Otherwise, None.

	
encrypt_and_digest(plaintext)

	Perform encrypt() and digest() in one step.

	Parameters

	plaintext (bytes/bytearray/memoryview) – The data to encrypt, of any size.

	Returns

	a tuple with two bytes objects:

	the ciphertext, of equal length as the plaintext

	the 16-byte MAC tag

	
hexdigest()

	Compute the printable authentication tag (MAC).

This method is like digest().

	Return

	the MAC tag, as a hexadecimal string.

	
hexverify(hex_mac_tag)

	Validate the printable authentication tag (MAC).

This method is like verify().

	Parameters

	hex_mac_tag (string) – This is the printable MAC.

	Raises ValueError

	if the MAC does not match. The message has been tampered with
or the key is incorrect.

	
update(data)

	Protect the associated data.

Associated data (also known as additional authenticated data - AAD)
is the piece of the message that must stay in the clear, while
still allowing the receiver to verify its integrity.
An example is packet headers.

The associated data (possibly split into multiple segments) is
fed into update() before any call to decrypt() or encrypt().
If there is no associated data, update() is not called.

	Parameters

	assoc_data (bytes/bytearray/memoryview) – A piece of associated data. There are no restrictions on its size.

	
verify(received_mac_tag)

	Validate the binary authentication tag (MAC).

The receiver invokes this method at the very end, to
check if the associated data (if any) and the decrypted
messages are valid.

	Parameters

	received_mac_tag (bytes/bytearray/memoryview) – This is the 16-byte binary MAC, as received from the sender.

	Raises ValueError

	if the MAC does not match. The message has been tampered with
or the key is incorrect.

	
Crypto.Cipher.ChaCha20_Poly1305.new(**kwargs)

	Create a new ChaCha20-Poly1305 or XChaCha20-Poly1305 AEAD cipher.

	Keyword Arguments

	
	key – The secret key to use. It must be 32 bytes long.

	nonce – A value that must never be reused for any other encryption
done with this key.

For ChaCha20-Poly1305, it must be 8 or 12 bytes long.

For XChaCha20-Poly1305, it must be 24 bytes long.

If not provided, 12 bytes will be generated randomly
(you can find them back in the nonce attribute).

	Return

	a Crypto.Cipher.ChaCha20.ChaCha20Poly1305Cipher object

 Single DES

Single DES

Warning

Use AES instead. This module is provided only for legacy purposes.

DES (Data Encryption Standard) [http://en.wikipedia.org/wiki/Data_Encryption_Standard] is a symmetric block cipher standardized
in FIPS 46-3 [http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf]
(now withdrawn).
It has a fixed data block size of 8 bytes.

Its keys are 64 bits long, even though 8 bits were used for integrity (now they
are ignored) and do not contribute to security. The effective key length is
therefore 56 bits only.

DES was never cryptographically broken, but its key length is too short by nowadays
standards and it could be brute forced with some effort.

As an example, encryption can be done as follows:

>>> from Crypto.Cipher import DES
>>>
>>> key = b'-8B key-'
>>> cipher = DES.new(key, DES.MODE_OFB)
>>> plaintext = b'sona si latine loqueris '
>>> msg = cipher.iv + cipher.encrypt(plaintext)

Module’s constants for the modes of operation supported with Single DES:

	var MODE_ECB

	Electronic Code Book (ECB)

	var MODE_CBC

	Cipher-Block Chaining (CBC)

	var MODE_CFB

	Cipher FeedBack (CFB)

	var MODE_OFB

	Output FeedBack (OFB)

	var MODE_CTR

	CounTer Mode (CTR)

	var MODE_OPENPGP

	OpenPGP Mode

	var MODE_EAX

	EAX Mode

	
Crypto.Cipher.DES.new(key, mode, *args, **kwargs)

	Create a new DES cipher.

	Parameters

	
	key (bytes/bytearray/memoryview) – The secret key to use in the symmetric cipher.
It must be 8 byte long. The parity bits will be ignored.

	mode (One of the supported MODE_* constants) – The chaining mode to use for encryption or decryption.

	Keyword Arguments

	
	iv (byte string) –
(Only applicable for MODE_CBC, MODE_CFB, MODE_OFB,
and MODE_OPENPGP modes).

The initialization vector to use for encryption or decryption.

For MODE_CBC, MODE_CFB, and MODE_OFB it must be 8 bytes long.

For MODE_OPENPGP mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the encrypted IV which was prefixed to the ciphertext).

If not provided, a random byte string is generated (you must then
read its value with the iv attribute).

	nonce (byte string) –
(Only applicable for MODE_EAX and MODE_CTR).

A value that must never be reused for any other encryption done
with this key.

For MODE_EAX there are no
restrictions on its length (recommended: 16 bytes).

For MODE_CTR, its length must be in the range [0..7].

If not provided for MODE_EAX, a random byte string is generated (you
can read it back via the nonce attribute).

	segment_size (integer) –
(Only MODE_CFB).The number of bits the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.

	mac_len : (integer) –
(Only MODE_EAX)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).

	initial_value : (integer) –
(Only MODE_CTR). The initial value for the counter within
the counter block. By default it is 0.

	Return

	a DES object, of the applicable mode.

 Triple DES

Triple DES

Warning

Use AES instead. This module is provided only for legacy purposes.

Triple DES [http://en.wikipedia.org/wiki/Triple_DES] (or TDES or TDEA or 3DES) is a symmetric block cipher
standardized by NIST in
SP 800-67 Rev1 [http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-67r1.pdf],
though they will deprecate [https://csrc.nist.gov/News/2017/Update-to-Current-Use-and-Deprecation-of-TDEA] it soon.

TDES has a fixed data block size of 8 bytes.
It consists of the cascade of 3 Single DES ciphers
(EDE: Encryption - Decryption - Encryption), where each stage uses an
independent DES sub-key.

The standard defines 3 Keying Options:

	Option 1: all sub-keys take different values (parity bits ignored).
The TDES key is therefore 24 bytes long (concatenation of K1, K2, and
K3) , to achieve 112 bits of effective security.

	Option 2: K1 matches K3 but K2 is different (parity bits ignored).
The TDES key is 16 bytes long (concatenation of K1 and K2),
to achieve 90 bits [http://people.scs.carleton.ca/~paulv/papers/Euro90.pdf] of effective security.
In this mode, the cipher is also termed 2TDES.

	Option 3: K1 K2, and K3 all match (parity bits ignored).
As result, Triple DES degrades to Single DES.

This implementation does not support and will purposefully fail when
attempting to configure the cipher in Option 3.

As an example, encryption can be done as follows:

>>> from Crypto.Cipher import DES3
>>> from Crypto.Random import get_random_bytes
>>>
>>> # Avoid Option 3
>>> while True:
>>> try:
>>> key = DES3.adjust_key_parity(get_random_bytes(24))
>>> break
>>> except ValueError:
>>> pass
>>>
>>> cipher = DES3.new(key, DES3.MODE_CFB)
>>> plaintext = b'We are no longer the knights who say ni!'
>>> msg = cipher.iv + cipher.encrypt(plaintext)

Module’s constants for the modes of operation supported with Triple DES:

	var MODE_ECB

	Electronic Code Book (ECB)

	var MODE_CBC

	Cipher-Block Chaining (CBC)

	var MODE_CFB

	Cipher FeedBack (CFB)

	var MODE_OFB

	Output FeedBack (OFB)

	var MODE_CTR

	CounTer Mode (CTR)

	var MODE_OPENPGP

	OpenPGP Mode

	var MODE_EAX

	EAX Mode

	
Crypto.Cipher.DES3.adjust_key_parity(key_in)

	Set the parity bits in a TDES key.

	Parameters

	key_in (byte string) – the TDES key whose bits need to be adjusted

	Returns

	a copy of key_in, with the parity bits correctly set

	Return type

	byte string

	Raises

	
	ValueError – if the TDES key is not 16 or 24 bytes long

	ValueError – if the TDES key degenerates into Single DES

	
Crypto.Cipher.DES3.new(key, mode, *args, **kwargs)

	Create a new Triple DES cipher.

	Parameters

	
	key (bytes/bytearray/memoryview) – The secret key to use in the symmetric cipher.
It must be 16 or 24 byte long. The parity bits will be ignored.

	mode (One of the supported MODE_* constants) – The chaining mode to use for encryption or decryption.

	Keyword Arguments

	
	iv (bytes, bytearray, memoryview) –
(Only applicable for MODE_CBC, MODE_CFB, MODE_OFB,
and MODE_OPENPGP modes).

The initialization vector to use for encryption or decryption.

For MODE_CBC, MODE_CFB, and MODE_OFB it must be 8 bytes long.

For MODE_OPENPGP mode only,
it must be 8 bytes long for encryption
and 10 bytes for decryption (in the latter case, it is
actually the encrypted IV which was prefixed to the ciphertext).

If not provided, a random byte string is generated (you must then
read its value with the iv attribute).

	nonce (bytes, bytearray, memoryview) –
(Only applicable for MODE_EAX and MODE_CTR).

A value that must never be reused for any other encryption done
with this key.

For MODE_EAX there are no
restrictions on its length (recommended: 16 bytes).

For MODE_CTR, its length must be in the range [0..7].

If not provided for MODE_EAX, a random byte string is generated (you
can read it back via the nonce attribute).

	segment_size (integer) –
(Only MODE_CFB).The number of bits the plaintext and ciphertext
are segmented in. It must be a multiple of 8.
If not specified, it will be assumed to be 8.

	mac_len : (integer) –
(Only MODE_EAX)
Length of the authentication tag, in bytes.
It must be no longer than 8 (default).

	initial_value : (integer) –
(Only MODE_CTR). The initial value for the counter within
the counter block. By default it is 0.

	Return

	a Triple DES object, of the applicable mode.

 PKCS#1 OAEP (RSA)

PKCS#1 OAEP (RSA)

PKCS#1 OAEP is an asymmetric cipher based on RSA and the OAEP padding.
It is described in RFC8017 [https://tools.ietf.org/html/rfc8017]
where it is called RSAES-OAEP.

It can only encrypt messages slightly shorter than the RSA modulus (a few
hundred bytes).

The following example shows how you encrypt data by means of
the recipient’s public key (here assumed to be
available locally in a file called public.pem):

>>> from Crypto.Cipher import PKCS1_OAEP
>>> from Crypto.PublicKey import RSA
>>>
>>> message = b'You can attack now!'
>>> key = RSA.importKey(open('public.pem').read())
>>> cipher = PKCS1_OAEP.new(key)
>>> ciphertext = cipher.encrypt(message)

The recipient uses its own private key to decrypt the message.
We assume the key is stored in a file called private.pem:

>>> key = RSA.importKey(open('private.pem').read())
>>> cipher = PKCS1_OAEP.new(key)
>>> message = cipher.decrypt(ciphertext)

Warning

PKCS#1 OAEP does not guarantee authenticity of the message you decrypt.
Since the public key is not secret, everybody could have created
the encrypted message.
Asymmetric encryption is typically paired with a digital signature.

Note

This module does not generate nor load RSA keys.
Refer to the Crypto.PublicKey.RSA module.

	
class Crypto.Cipher.PKCS1_OAEP.PKCS1OAEP_Cipher(key, hashAlgo, mgfunc, label, randfunc)

	Cipher object for PKCS#1 v1.5 OAEP.
Do not create directly: use new() instead.

	
can_decrypt()

	Legacy function to check if you can call decrypt().

Deprecated since version 3.0.

	
can_encrypt()

	Legacy function to check if you can call encrypt().

Deprecated since version 3.0.

	
decrypt(ciphertext)

	Decrypt a message with PKCS#1 OAEP.

	Parameters

	ciphertext (bytes/bytearray/memoryview) – The encrypted message.

	Returns

	The original message (plaintext).

	Return type

	bytes

	Raises

	
	ValueError – if the ciphertext has the wrong length, or if decryption
fails the integrity check (in which case, the decryption
key is probably wrong).

	TypeError – if the RSA key has no private half (i.e. you are trying
to decrypt using a public key).

	
encrypt(message)

	Encrypt a message with PKCS#1 OAEP.

	Parameters

	message (bytes/bytearray/memoryview) – The message to encrypt, also known as plaintext. It can be of
variable length, but not longer than the RSA modulus (in bytes)
minus 2, minus twice the hash output size.
For instance, if you use RSA 2048 and SHA-256, the longest message
you can encrypt is 190 byte long.

	Returns

	The ciphertext, as large as the RSA modulus.

	Return type

	bytes

	Raises

	ValueError – if the message is too long.

	
Crypto.Cipher.PKCS1_OAEP.new(key, hashAlgo=None, mgfunc=None, label=b'', randfunc=None)

	Return a cipher object PKCS1OAEP_Cipher that can be used to perform PKCS#1 OAEP encryption or decryption.

	Parameters

	
	key (RSA key object) – The key object to use to encrypt or decrypt the message.
Decryption is only possible with a private RSA key.

	hashAlgo (hash object) – The hash function to use. This can be a module under Crypto.Hash
or an existing hash object created from any of such modules.
If not specified, Crypto.Hash.SHA1 is used.

	mgfunc (callable) – A mask generation function that accepts two parameters: a string to
use as seed, and the lenth of the mask to generate, in bytes.
If not specified, the standard MGF1 consistent with hashAlgo is used (a safe choice).

	label (bytes/bytearray/memoryview) – A label to apply to this particular encryption. If not specified,
an empty string is used. Specifying a label does not improve
security.

	randfunc (callable) – A function that returns random bytes.
The default is Random.get_random_bytes.

 PKCS#1 v1.5 encryption (RSA)

PKCS#1 v1.5 encryption (RSA)

Warning

Use PKCS#1 OAEP (RSA) instead. This module is provided only for legacy purposes.

See RFC8017 [https://tools.ietf.org/html/rfc8017] or the original RSA Labs specification [http://www.rsa.com/rsalabs/node.asp?id=2125.] .

This scheme is more properly called RSAES-PKCS1-v1_5.

As an example, a sender may encrypt a secret AES key in this way:

>>> from Crypto.Cipher import PKCS1_v1_5
>>> from Crypto.PublicKey import RSA
>>> from Crypto.Random import get_random_bytes
>>>
>>> aes_key = get_random_bytes(16)
>>>
>>> rsa_key = RSA.importKey(open('pubkey.der').read())
>>> cipher = PKCS1_v1_5.new(rsa_key)
>>> ciphertext = cipher.encrypt(aes_key)

At the receiver side, decryption can be done using the private part of
the RSA key:

>>> from Crypto.Random import get_random_bytes
>>>
>>> rsa_key = RSA.importKey(open('privkey.der').read())
>>>
>>> sentinel = get_random_bytes(16)
>>>
>>> cipher = PKCS1_v1_5.new(rsa_key)
>>> aes_key = cipher.decrypt(ciphertext, sentinel, expected_pt_len=16)
>>>
>>> # The AES key is the random sentinel in case of error

	
Crypto.Cipher.PKCS1_v1_5.new(key, randfunc=None)

	Create a cipher for performing PKCS#1 v1.5 encryption or decryption.

	Parameters

	
	key (RSA key object) – The key to use to encrypt or decrypt the message. This is a Crypto.PublicKey.RSA object.
Decryption is only possible if key is a private RSA key.

	randfunc (callable) – Function that return random bytes.
The default is Crypto.Random.get_random_bytes().

	Returns

	A cipher object PKCS115_Cipher.

	
class Crypto.Cipher.PKCS1_v1_5.PKCS115_Cipher(key, randfunc)

	This cipher can perform PKCS#1 v1.5 RSA encryption or decryption.
Do not instantiate directly. Use Crypto.Cipher.PKCS1_v1_5.new() instead.

	
can_decrypt()

	Return True if this cipher object can be used for decryption.

	
can_encrypt()

	Return True if this cipher object can be used for encryption.

	
decrypt(ciphertext, sentinel, expected_pt_len=0)

	Decrypt a PKCS#1 v1.5 ciphertext.

This is the function RSAES-PKCS1-V1_5-DECRYPT specified in
section 7.2.2 of RFC8017 [https://tools.ietf.org/html/rfc8017#page-29].

	Parameters

	
	ciphertext (bytes/bytearray/memoryview) – The ciphertext that contains the message to recover.

	sentinel (any type) – The object to return whenever an error is detected.

	expected_pt_len (integer) – The length the plaintext is known to have, or 0 if unknown.

	Returns (byte string):

	It is either the original message or the sentinel (in case of an error).

Warning

PKCS#1 v1.5 decryption is intrinsically vulnerable to timing
attacks (see Bleichenbacher’s [https://dx.doi.org/10.1007/BFb0055716] attack).
Use PKCS#1 OAEP instead.

This implementation attempts to mitigate the risk
with some constant-time constructs.
However, they are not sufficient by themselves: the type of protocol you
implement and the way you handle errors make a big difference.

Specifically, you should make it very hard for the (malicious)
party that submitted the ciphertext to quickly understand if decryption
succeeded or not.

To this end, it is recommended that your protocol only encrypts
plaintexts of fixed length (expected_pt_len),
that sentinel is a random byte string of the same length,
and that processing continues for as long
as possible even if sentinel is returned (i.e. in case of
incorrect decryption).

	
encrypt(message)

	Produce the PKCS#1 v1.5 encryption of a message.

This function is named RSAES-PKCS1-V1_5-ENCRYPT, and it is specified in
section 7.2.1 of RFC8017 [https://tools.ietf.org/html/rfc8017#page-28].

	Parameters

	message (bytes/bytearray/memoryview) – The message to encrypt, also known as plaintext. It can be of
variable length, but not longer than the RSA modulus (in bytes) minus 11.

	Returns

	A byte string, the ciphertext in which the message is encrypted.
It is as long as the RSA modulus (in bytes).

	Raises ValueError

	If the RSA key length is not sufficiently long to deal with the given
message.

 Salsa20

Salsa20

Salsa20 [http://cr.yp.to/snuffle/spec.pdf] is a stream cipher designed by Daniel J. Bernstein.
The secret key is by preference 256 bits long, but it can also
work with 128 bit keys.

This is an example of how Salsa20 can encrypt data:

>>> from Crypto.Cipher import Salsa20
>>>
>>> plaintext = b'Attack at dawn'
>>> secret = b'*Thirty-two byte (256 bits) key*'
>>> cipher = Salsa20.new(key=secret)
>>> msg = cipher.nonce + cipher.encrypt(plaintext)

And this is how you would decrypt it:

>>> from Crypto.Cipher import Salsa20
>>>
>>> secret = b'*Thirty-two byte (256 bits) key*'
>>> msg_nonce = msg[:8]
>>> ciphertext = msg[8:]
>>> cipher = Salsa20.new(key=secret, nonce=msg_nonce)
>>> plaintext = cipher.decrypt(ciphertext)

Warning

Salsa20 does not guarantee authenticity of the data you decrypt!
In other words, an attacker may manipulate the data in transit.
In order to prevent that, you must also use a Message Authentication
Code (such as HMAC) to authenticate the ciphertext
(encrypt-then-mac).

	
class Crypto.Cipher.Salsa20.Salsa20Cipher(key, nonce)

	Salsa20 cipher object. Do not create it directly. Use new()
instead.

	Variables

	nonce (byte string) – The nonce with length 8

	
decrypt(ciphertext, output=None)

	Decrypt a piece of data.

	Parameters

	ciphertext (bytes/bytearray/memoryview) – The data to decrypt, of any size.

	Keyword Arguments

	output (bytes/bytearray/memoryview) – The location where the plaintext
is written to. If None, the plaintext is returned.

	Returns

	If output is None, the plaintext is returned as bytes.
Otherwise, None.

	
encrypt(plaintext, output=None)

	Encrypt a piece of data.

	Parameters

	plaintext (bytes/bytearray/memoryview) – The data to encrypt, of any size.

	Keyword Arguments

	output (bytes/bytearray/memoryview) – The location where the ciphertext
is written to. If None, the ciphertext is returned.

	Returns

	If output is None, the ciphertext is returned as bytes.
Otherwise, None.

	
Crypto.Cipher.Salsa20.new(key, nonce=None)

	Create a new Salsa20 cipher

	Keyword Arguments

	
	key – The secret key to use. It must be 16 or 32 bytes long.

	nonce – A value that must never be reused for any other encryption
done with this key. It must be 8 bytes long.

If not provided, a random byte string will be generated (you can read
it back via the nonce attribute of the returned object).

	Return

	a Crypto.Cipher.Salsa20.Salsa20Cipher object

 BLAKE2b

BLAKE2b

BLAKE2b [https://blake2.net/] is an optimized variant of BLAKE, one of the SHA-3 candidates that
made it to the final round of the NIST hash competition.
It is specified in RFC7693 [https://tools.ietf.org/html/rfc7693].

The algorithm uses 64 bit words, and it therefore works best on
64-bit platforms. The digest size ranges from 8 to 512 bits.

>>> from Crypto.Hash import BLAKE2b
>>>
>>> h_obj = BLAKE2b.new(digest_bits=512)
>>> h_obj.update(b'Some data')
>>> print h_obj.hexdigest()

Optionally, BLAKE2b can work as a cryptographic MAC when initialized
with a secret key.

>>> from Crypto.Hash import BLAKE2b
>>>
>>> mac = BLAKE2b.new(digest_bits=256, key=b'secret')
>>> mac.update(b'Some data')
>>> print mac.hexdigest()

	
class Crypto.Hash.BLAKE2b.BLAKE2b_Hash(data, key, digest_bytes, update_after_digest)

	A BLAKE2b hash object.
Do not instantiate directly. Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
hexverify(hex_mac_tag)

	Verify that a given printable MAC (computed by another party)
is valid.

	Parameters

	hex_mac_tag (string) – the expected MAC of the message, as a hexadecimal string.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
new(**kwargs)

	Return a new instance of a BLAKE2b hash object.
See new().

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (bytes/bytearray/memoryview) – The next chunk of the message being hashed.

	
verify(mac_tag)

	Verify that a given binary MAC (computed by another party)
is valid.

	Parameters

	mac_tag (bytes/bytearray/memoryview) – the expected MAC of the message.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
Crypto.Hash.BLAKE2b.new(**kwargs)

	Create a new hash object.

	Parameters

	
	data (bytes/bytearray/memoryview) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to BLAKE2b_Hash.update().

	digest_bytes (integer) – Optional. The size of the digest, in bytes (1 to 64). Default is 64.

	digest_bits (integer) – Optional and alternative to digest_bytes.
The size of the digest, in bits (8 to 512, in steps of 8).
Default is 512.

	key (bytes/bytearray/memoryview) – Optional. The key to use to compute the MAC (1 to 64 bytes).
If not specified, no key will be used.

	update_after_digest (boolean) – Optional. By default, a hash object cannot be updated anymore after
the digest is computed. When this flag is True, such check
is no longer enforced.

	Returns

	A BLAKE2b_Hash hash object

 BLAKE2s

BLAKE2s

BLAKE2s is an optimized variant of BLAKE, one of the SHA-3 candidates that
made it to the final round of the NIST hash competition.
It is specified in RFC7693 [https://tools.ietf.org/html/rfc7693].

The algorithm uses 32 bit words, and it therefore works best on
32-bit platforms. The digest size ranges from 8 to 256 bits:

>>> from Crypto.Hash import BLAKE2s
>>>
>>> h_obj = BLAKE2s.new(digest_bits=256)
>>> h_obj.update(b'Some data')
>>> print h_obj.hexdigest()

Optionally, BLAKE2s can work as a cryptographic MAC when initialized
with a secret key:

>>> from Crypto.Hash import BLAKE2s
>>>
>>> mac = BLAKE2s.new(digest_bits=128, key=b'secret')
>>> mac.update(b'Some data')
>>> print mac.hexdigest()

	
class Crypto.Hash.BLAKE2s.BLAKE2s_Hash(data, key, digest_bytes, update_after_digest)

	A BLAKE2s hash object.
Do not instantiate directly. Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
hexverify(hex_mac_tag)

	Verify that a given printable MAC (computed by another party)
is valid.

	Parameters

	hex_mac_tag (string) – the expected MAC of the message, as a hexadecimal string.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
new(**kwargs)

	Return a new instance of a BLAKE2s hash object.
See new().

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
verify(mac_tag)

	Verify that a given binary MAC (computed by another party)
is valid.

	Parameters

	mac_tag (byte string/byte array/memoryview) – the expected MAC of the message.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
Crypto.Hash.BLAKE2s.new(**kwargs)

	Create a new hash object.

	Parameters

	
	data (byte string/byte array/memoryview) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to BLAKE2s_Hash.update().

	digest_bytes (integer) – Optional. The size of the digest, in bytes (1 to 32). Default is 32.

	digest_bits (integer) – Optional and alternative to digest_bytes.
The size of the digest, in bits (8 to 256, in steps of 8).
Default is 256.

	key (byte string) – Optional. The key to use to compute the MAC (1 to 64 bytes).
If not specified, no key will be used.

	update_after_digest (boolean) – Optional. By default, a hash object cannot be updated anymore after
the digest is computed. When this flag is True, such check
is no longer enforced.

	Returns

	A BLAKE2s_Hash hash object

 CMAC

CMAC

CMAC (Cipher-based Message Authentication Code) is a MAC defined
in NIST SP 800-38B [http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf] and in RFC4493 [http://www.ietf.org/rfc/rfc4493.txt] (for AES only) and
constructed using a block cipher. It was originally known as OMAC1 [http://www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html].

The algorithm is sometimes named X-CMAC where X is the name
of the cipher (e.g. AES-CMAC).

This is an example showing how to generate an AES-CMAC tag:

>>> from Crypto.Hash import CMAC
>>> from Crypto.Cipher import AES
>>>
>>> secret = b'Sixteen byte key'
>>> cobj = CMAC.new(secret, ciphermod=AES)
>>> cobj.update(b'Hello')
>>> print cobj.hexdigest()

And this is an example showing how to validate the AES-CMAC:

>>> from Crypto.Hash import CMAC
>>> from Crypto.Cipher import AES
>>>
>>> # We have received a message 'msg' together
>>> # with its MAC 'mac'
>>>
>>> secret = b'Sixteen byte key'
>>> cobj = CMAC.new(secret, ciphermod=AES)
>>> cobj.update(msg)
>>> try:
>>> cobj.verify(mac)
>>> print "The message '%s' is authentic" % msg
>>> except ValueError:
>>> print "The message or the key is wrong"

A cipher block size of 128 bits (like for AES) guarantees that the risk
of MAC collisions remains negligible even when the same CMAC key is
used to authenticate a large amount of data.

This implementation allows also usage of ciphers with a 64 bits block size
(like TDES) for legacy purposes only.
However, the risk is much higher and one CMAC key should be rotated
after as little as 16 MB (in total) have been authenticated.

	
class Crypto.Hash.CMAC.CMAC(key, msg, ciphermod, cipher_params, mac_len, update_after_digest)

	A CMAC hash object.
Do not instantiate directly. Use the new() function.

	Variables

	digest_size (integer) – the size in bytes of the resulting MAC tag

	
copy()

	Return a copy (“clone”) of the CMAC object.

The copy will have the same internal state as the original CMAC
object.
This can be used to efficiently compute the MAC tag of byte
strings that share a common initial substring.

	Returns

	An CMAC

	
digest()

	Return the binary (non-printable) MAC tag of the message
that has been authenticated so far.

	Returns

	The MAC tag, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable MAC tag of the message authenticated so far.

	Returns

	The MAC tag, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
hexverify(hex_mac_tag)

	Return the printable MAC tag of the message authenticated so far.

	Returns

	The MAC tag, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
update(msg)

	Authenticate the next chunk of message.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of data

	
verify(mac_tag)

	Verify that a given binary MAC (computed by another party)
is valid.

	Parameters

	mac_tag (byte string/byte array/memoryview) – the expected MAC of the message.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
Crypto.Hash.CMAC.new(key, msg=None, ciphermod=None, cipher_params=None, mac_len=None, update_after_digest=False)

	Create a new MAC object.

	Parameters

	
	key (byte string/byte array/memoryview) – key for the CMAC object.
The key must be valid for the underlying cipher algorithm.
For instance, it must be 16 bytes long for AES-128.

	ciphermod (module) – A cipher module from Crypto.Cipher.
The cipher’s block size has to be 128 bits,
like Crypto.Cipher.AES, to reduce the probability
of collisions.

	msg (byte string/byte array/memoryview) – Optional. The very first chunk of the message to authenticate.
It is equivalent to an early call to CMAC.update. Optional.

	cipher_params (dict) – Optional. A set of parameters to use when instantiating a cipher
object.

	mac_len (integer) – Length of the MAC, in bytes.
It must be at least 4 bytes long.
The default (and recommended) length matches the size of a cipher block.

	update_after_digest (boolean) – Optional. By default, a hash object cannot be updated anymore after
the digest is computed. When this flag is True, such check
is no longer enforced.

	Returns

	A CMAC object

 cSHAKE128

cSHAKE128

cSHAKE128 is an extendable-output function (XOF) in the SHA-3 family, as specified in SP 800-185 [https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf].

As a XOF, cSHAKE128 is a generalization of a cryptographic hash function.
It is not limited to creating fixed-length digests (e.g., SHA-256 will always output exactly 32 bytes):
it produces digests of any length, and it can be used as a Pseudo Random Generator (PRG).

Output bits do not depend on the output length.

The 128 in its name indicates its maximum security level (in bits),
as described in Section 3.1 of SP 800-185 [https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf].

cSHAKE128 is a customizable version of SHAKE128 and allows for additional domain separation
via a customization string (custom parameter to Crypto.Hash.cSHAKE128.new()).

Hint

For instance, if you are using cSHAKE128 in two applications,
by picking different customization strings you can ensure
that they will never end up using the same digest in practice.
The important factor is that the strings are different;
what the strings say does not matter.

If the customization string is empty, cSHAKE128 defaults back to SHAKE128.
See also Section 3.3 of SP 800-185 [https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf].

In the following example, we extract 26 bytes (208 bits) from the XOF:

>>> from Crypto.Hash import cSHAKE128
>>>
>>> shake = cSHAKE128.new(custom=b'Email Signature')
>>> shake.update(b'Some data')
>>> print(shake.read(26).hex())

	
class Crypto.Hash.cSHAKE128.cSHAKE_XOF(data, custom, capacity, function)

	A cSHAKE hash object.
Do not instantiate directly.
Use the new() function.

	
read(length)

	Compute the next piece of XOF output.

Note

You cannot use update() anymore after the first call to
read().

	Parameters

	length (integer) – the amount of bytes this method must return

	Returns

	the next piece of XOF output (of the given length)

	Return type

	byte string

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.cSHAKE128.new(data=None, custom=None)

	Return a fresh instance of a cSHAKE128 object.

	Parameters

	
	data (bytes/bytearray/memoryview) – Optional.
The very first chunk of the message to hash.
It is equivalent to an early call to update().

	custom (bytes) – Optional.
A customization bytestring (S in SP 800-185).

	Return

	A cSHAKE_XOF object

 cSHAKE256

cSHAKE256

cSHAKE256 is an extendable-output function (XOF) in the SHA-3 family, as specified in SP 800-185 [https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf].

As a XOF, cSHAKE256 is a generalization of a cryptographic hash function.
It is not limited to creating fixed-length digests (e.g., SHA-256 will always output exactly 32 bytes):
it produces digests of any length, and it can be used as a Pseudo Random Generator (PRG).

Output bits do not depend on the output length.

The 256 in its name indicates its maximum security level (in bits),
as described in Section 3.1 of SP 800-185 [https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf].

cSHAKE256 is a customizable version of SHAKE256 and allows for additional domain separation
via a customization string (custom parameter to Crypto.Hash.cSHAKE256.new()).

Hint

For instance, if you are using cSHAKE256 in two applications,
by picking different customization strings you can ensure
that they will never end up using the same digest in practice.
The important factor is that the strings are different;
what the strings say does not matter.

If the customization string is empty, cSHAKE256 defaults back to SHAKE128.
See also Section 3.3 of SP 800-185 [https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf].

In the following example, we extract 26 bytes (208 bits) from the XOF:

>>> from Crypto.Hash import cSHAKE256
>>>
>>> shake = cSHAKE256.new(custom=b'Email Signature')
>>> shake.update(b'Some data')
>>> print(shake.read(26).hex())

	
Crypto.Hash.cSHAKE256.new(data=None, custom=None)

	Return a fresh instance of a cSHAKE256 object.

	Parameters

	
	data (bytes/bytearray/memoryview) – The very first chunk of the message to hash.
It is equivalent to an early call to update().
Optional.

	custom (bytes) – Optional.
A customization bytestring (S in SP 800-185).

	Return

	A cSHAKE_XOF object

 HMAC

HMAC

HMAC (Hash-based Message Authentication Code) is a MAC defined
in RFC2104 [http://www.ietf.org/rfc/rfc2104.txt] and FIPS-198 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf] and constructed using a cryptographic
hash algorithm.

It is usually named HMAC-X, where X is the hash algorithm; for
instance HMAC-SHA1 or HMAC-SHA256.

The strength of an HMAC depends on:

	the strength of the hash algorithm

	the entropy of the secret key

This is an example showing how to generate a MAC (with HMAC-SHA256):

>>> from Crypto.Hash import HMAC, SHA256
>>>
>>> secret = b'Swordfish'
>>> h = HMAC.new(secret, digestmod=SHA256)
>>> h.update(b'Hello')
>>> print(h.hexdigest())

This is an example showing how to validate the MAC:

>>> from Crypto.Hash import HMAC, SHA256
>>>
>>> # We have received a message 'msg' together
>>> # with its MAC 'mac'
>>>
>>> secret = b'Swordfish'
>>> h = HMAC.new(secret, digestmod=SHA256)
>>> h.update(msg)
>>> try:
>>> h.hexverify(mac)
>>> print("The message '%s' is authentic" % msg)
>>> except ValueError:
>>> print("The message or the key is wrong")

	
Crypto.Hash.HMAC.new(key, msg=b'', digestmod=None)

	Create a new MAC object.

	Parameters

	
	key (bytes/bytearray/memoryview) – key for the MAC object.
It must be long enough to match the expected security level of the
MAC.

	msg (bytes/bytearray/memoryview) – Optional. The very first chunk of the message to authenticate.
It is equivalent to an early call to HMAC.update().

	digestmod (module) – The hash to use to implement the HMAC.
Default is Crypto.Hash.MD5.

	Returns

	An HMAC object

	
class Crypto.Hash.HMAC.HMAC(key, msg=b'', digestmod=None)

	An HMAC hash object.
Do not instantiate directly. Use the new() function.

	Variables

	digest_size (integer) – the size in bytes of the resulting MAC tag

	
copy()

	Return a copy (“clone”) of the HMAC object.

The copy will have the same internal state as the original HMAC
object.
This can be used to efficiently compute the MAC tag of byte
strings that share a common initial substring.

	Returns

	An HMAC

	
digest()

	Return the binary (non-printable) MAC tag of the message
authenticated so far.

	Returns

	The MAC tag digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable MAC tag of the message authenticated so far.

	Returns

	The MAC tag, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
hexverify(hex_mac_tag)

	Verify that a given printable MAC (computed by another party)
is valid.

	Parameters

	hex_mac_tag (string) – the expected MAC of the message,
as a hexadecimal string.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
update(msg)

	Authenticate the next chunk of message.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of data

	
verify(mac_tag)

	Verify that a given binary MAC (computed by another party)
is valid.

	Parameters

	mac_tag (byte string/byte string/memoryview) – the expected MAC of the message.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

 KangarooTwelve

KangarooTwelve

KangarooTwelve is an extendable-output function (XOF) based on the Keccak permutation,
which is also the basis for SHA-3.

As a XOF, KangarooTwelve is a generalization of a cryptographic hash function.
It is not limited to creating fixed-length digests (e.g., SHA-256 will always output exactly 32 bytes):
it produces digests of any length, and it can be used as a Pseudo Random Generator (PRG).

Output bits do not depend on the output length.

KangarooTwelve is not standardized. However, an RFC [https://datatracker.ietf.org/doc/draft-irtf-cfrg-kangarootwelve/] is being written.
It provides 128 bit of security against (second) pre-image attacks when the output is at least 128 bits long.
It provides the same security level against collision attacks when the output is at least 256 bits long.

In addition to hashing, KangarooTwelve allows for domain separation
via a customization string (custom parameter to Crypto.Hash.KangarooTwelve.new()).

Hint

For instance, if you are using KangarooTwelve in two applications,
by picking different customization strings you can ensure
that they will never end up using the same digest in practice.
The important factor is that the strings are different;
what the strings say does not matter.

In the following example, we extract 26 bytes (208 bits) from the XOF:

>>> from Crypto.Hash import KangarooTwelve as K12
>>>
>>> kangaroo = K12.new(custom=b'Email Signature')
>>> kangaroo.update(b'Some data')
>>> print(kangaroo.read(26).hex())
61e571c51da64228a85d495f3546c43a4dd2c1fd5de87e45dc58

	
class Crypto.Hash.KangarooTwelve.K12_XOF(data, custom)

	A KangarooTwelve hash object.
Do not instantiate directly.
Use the new() function.

	
read(length)

	Produce more bytes of the digest.

Note

You cannot use update() anymore after the first call to
read().

	Parameters

	length (integer) – the amount of bytes this method must return

	Returns

	the next piece of XOF output (of the given length)

	Return type

	byte string

	
update(data)

	Hash the next piece of data.

Note

For better performance, submit chunks with a length multiple of 8192 bytes.

	Parameters

	
	data (byte string/byte array/memoryview) – The next chunk of the

	to hash. (message) –

	
Crypto.Hash.KangarooTwelve.new(data=None, custom=None)

	Return a fresh instance of a KangarooTwelve object.

	Parameters

	
	data (bytes/bytearray/memoryview) – Optional.
The very first chunk of the message to hash.
It is equivalent to an early call to update().

	custom (bytes) – Optional.
A customization byte string.

	Return

	A K12_XOF object

 Keccak

Keccak

Keccak [http://www.keccak.noekeon.org/Keccak-specifications.pdf] is a family of cryptographic hash algorithms that won
the SHA-3 competition organized by NIST.
What eventually became SHA-3 (FIPS 202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf]) is a slight variant: though incompatible
to Keccak, the security principles and margins remain the same.

If you are interested in writing SHA-3 compliant code, you must use
the modules Crypto.Hash.SHA3_224,
Crypto.Hash.SHA3_256, Crypto.Hash.SHA3_384 or Crypto.Hash.SHA3_512.

This module implements the Keccak hash functions for the 64 bit word
length (b=1600) and the fixed digest sizes of 224, 256, 384 and 512 bits.

This is an example:

>>> from Crypto.Hash import keccak
>>>
>>> keccak_hash = keccak.new(digest_bits=512)
>>> keccak_hash.update(b'Some data')
>>> print keccak_hash.hexdigest()

	
class Crypto.Hash.keccak.Keccak_Hash(data, digest_bytes, update_after_digest)

	A Keccak hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	digest_size (integer) – the size in bytes of the resulting hash

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(**kwargs)

	Create a fresh Keccak hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.keccak.new(**kwargs)

	Create a new hash object.

	Parameters

	
	data (bytes/bytearray/memoryview) – The very first chunk of the message to hash.
It is equivalent to an early call to Keccak_Hash.update().

	digest_bytes (integer) – The size of the digest, in bytes (28, 32, 48, 64).

	digest_bits (integer) – The size of the digest, in bits (224, 256, 384, 512).

	update_after_digest (boolean) – Whether Keccak.digest() can be followed by another
Keccak.update() (default: False).

	Return

	A Keccak_Hash hash object

 KMAC128

KMAC128

KMAC128 is a variable-length Message Authenticated Code (MAC) derived from SHA-3
and standardized in NIST SP 800-185 [https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-185.pdf].

KMAC128 provides a security strength of 128 bits.
It must be keyed with a secret of 16 bytes or more.

This is an example showing how to generate a KMAC128 tag:

>>> from Crypto.Hash import KMAC128
>>>
>>> secret = b'Sixteen byte key'
>>> mac = KMAC128.new(key=secret, mac_len=16)
>>> mac.update(b'Hello')
>>> print(mac.hexdigest())
e6cb0fb015898ebd019d4eb5fad444bf

And this is an example showing how to validate the KMAC128 tag:

>>> from Crypto.Hash import KMAC128
>>>
>>> # We have received a message 'msg' together
>>> # with its MAC 'mac'
>>>
>>> secret = b'Sixteen byte key'
>>> mac = KMAC128.new(key=secret, mac_len=16)
>>> mac.update(msg)
>>> try:
>>> mac.verify(mac)
>>> print("The message '%s' is authentic" % msg)
>>> except ValueError:
>>> print("The message or the key is wrong")

An application can select the length of the MAC tag by means of the initialization parameter mac_len.
For instance, while the traditional HMAC-SHA256 can only produce 32-byte tags,
with KMAC128 you can produce 16-byte tags (see the examples above) but also a 33-byte tag:

>>> from Crypto.Hash import KMAC128
>>>
>>> secret = b'Sixteen byte key'
>>> mac = KMAC128.new(key=secret, mac_len=33)
>>> mac.update(b'Hello')
>>> print(mac.hexdigest())
eed4b3157bd5d98002ad0ca990c192125416c7a72705fea22cf5d896361243bc5a

Note how the 16-byte tag is NOT just the truncated version of the 33-byte tag: they are cryptographically uncorrelated.

	
class Crypto.Hash.KMAC128.KMAC_Hash(data, key, mac_len, custom, oid_variant, cshake, rate)

	A KMAC hash object.
Do not instantiate directly.
Use the new() function.

	
digest()

	Return the binary (non-printable) MAC tag of the message.

	Returns

	The MAC tag. Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable MAC tag of the message.

	Returns

	The MAC tag. Hexadecimal encoded.

	Return type

	string

	
hexverify(hex_mac_tag)

	Verify that a given printable MAC (computed by another party)
is valid.

	Parameters

	hex_mac_tag (string) – the expected MAC of the message, as a hexadecimal string.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
new(**kwargs)

	Return a new instance of a KMAC hash object.
See new().

	
update(data)

	Authenticate the next chunk of message.

	Parameters

	
	data (bytes/bytearray/memoryview) – The next chunk of the message to

	authenticate. –

	
verify(mac_tag)

	Verify that a given binary MAC (computed by another party)
is valid.

	Parameters

	mac_tag (bytes/bytearray/memoryview) – the expected MAC of the message.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
Crypto.Hash.KMAC128.new(**kwargs)

	Create a new KMAC128 object.

	Parameters

	
	key (bytes/bytearray/memoryview) – The key to use to compute the MAC.
It must be at least 128 bits long (16 bytes).

	data (bytes/bytearray/memoryview) – Optional. The very first chunk of the message to authenticate.
It is equivalent to an early call to KMAC_Hash.update().

	mac_len (integer) – Optional. The size of the authentication tag, in bytes.
Default is 64. Minimum is 8.

	custom (bytes/bytearray/memoryview) – Optional. A customization byte string (S in SP 800-185).

	Returns

	A KMAC_Hash hash object

 KMAC256

KMAC256

KMAC256 is a variable-length Message Authenticated Code (MAC) derived from SHA-3
and standardized in NIST SP 800-185 [https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-185.pdf].

KMAC256 provides a security strength of 256 bits.
It must be keyed with a secret of 32 bytes or more.

This is an example showing how to generate a KMAC256 tag:

>>> from Crypto.Hash import KMAC256
>>>
>>> secret = b'Protect this thirty-two byte key'
>>> mac = KMAC256.new(key=secret, mac_len=16)
>>> mac.update(b'Hello')
>>> print(mac.hexdigest())
4ba8c9808f10b3bf5621f393363f4e1a

And this is an example showing how to validate the KMAC256 tag:

>>> from Crypto.Hash import KMAC256
>>>
>>> # We have received a message 'msg' together
>>> # with its MAC 'mac'
>>>
>>> secret = b'Protect this thirty-two byte key'
>>> mac = KMAC256.new(key=secret, mac_len=16)
>>> mac.update(msg)
>>> try:
>>> mac.verify(mac)
>>> print("The message '%s' is authentic" % msg)
>>> except ValueError:
>>> print("The message or the key is wrong")

An application can select the length of the MAC tag by means of the initialization parameter mac_len.
For instance, while the traditional HMAC-SHA256 can only produce 32-byte tags,
with KMAC256 you can produce 16-byte tags (see the examples above) but also a 33-byte tag:

>>> from Crypto.Hash import KMAC256
>>>
>>> secret = b'Protect this thirty-two byte key'
>>> mac = KMAC256.new(key=secret, mac_len=33)
>>> mac.update(b'Hello')
>>> print(mac.hexdigest())
518938a66f4ce8f50a35cf77d16f002d5734da495eb6dea1e41191e657890ba4ad

Note how the 16-byte tag is NOT just the truncated version of the 33-byte tag: they are cryptographically uncorrelated.

	
Crypto.Hash.KMAC256.new(**kwargs)

	Create a new KMAC256 object.

	Parameters

	
	key (bytes/bytearray/memoryview) – The key to use to compute the MAC.
It must be at least 256 bits long (32 bytes).

	data (bytes/bytearray/memoryview) – Optional. The very first chunk of the message to authenticate.
It is equivalent to an early call to KMAC_Hash.update().

	mac_len (integer) – Optional. The size of the authentication tag, in bytes.
Default is 64. Minimum is 8.

	custom (bytes/bytearray/memoryview) – Optional. A customization byte string (S in SP 800-185).

	Returns

	A KMAC_Hash hash object

 MD2

MD2

MD2 is specified in RFC1319 [http://tools.ietf.org/html/rfc1319] and it produces the 128 bit digest of a message.
For example:

>>> from Crypto.Hash import MD2
>>>
>>> h = MD2.new()
>>> h.update(b'Hello')
>>> print h.hexdigest()

MD2 stand for Message Digest version 2, and it was invented by Rivest in 1989.

Warning

This algorithm is not considered secure. Do not use it for new designs.

	
class Crypto.Hash.MD2.MD2Hash(data=None)

	An MD2 hash object.
Do not instantiate directly. Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.MD2.new(data=None)

	Create a new hash object.

	Parameters

	data (bytes/bytearray/memoryview) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to MD2Hash.update().

	Return

	A MD2Hash hash object

 MD5

MD5

MD5 is specified in RFC1321 [http://tools.ietf.org/html/rfc1321] and produces the 128 bit digest of a message.
For example:

>>> from Crypto.Hash import MD5:
>>>
>>> h = MD5.new()
>>> h.update(b'Hello')
>>> print h.hexdigest()

MD5 stand for Message Digest version 5, and it was invented by Rivest in 1991.

Warning

This algorithm is not considered secure. Do not use it for new designs.

Warning

MD5 is vulnerable to length-extension attacks [https://crypto.stackexchange.com/questions/3978/understanding-the-length-extension-attack],
which are relevant if you are computing the hash of a secret message.

For instance, let’s say you were planning to build a cheap MAC by concatenating a secret key to
a public message m (bad idea!):

\[h = \text{MD5}(m || k)\]

By only knowing the digest h and the length of m and k, the attacker can easily compute a second digest h’:

\[h' = \text{MD5}(m || p || z)\]

where p is a well-known bit string and the attacker can pick a bit string z at will.

	
Crypto.MD5.new(msg=None)

	Create a new hash object.

	Parameters

	msg (byte string) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to update().

	Returns

	An MD5_Hash hash object

	
class Crypto.MD5.MD5_Hash

	An MD5 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
update(msg)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	msg – The next chunk of the message being hashed.

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

 Poly1305

Poly1305

Poly1305 is a fast Carter-Wegman MAC algorithm created by Daniel J. Bernstein.
It requires a 32-byte secret key, a 16-byte nonce, and a symmetric cipher.
The MAC tag is always 16 bytes long.

Originally, Poly1305 was defined [https://cr.yp.to/mac/poly1305-20050329.pdf] in combination with AES, but it is now most frequently seen used in combination with ChaCha20 and XChaCha20.

This is an example showing how to generate a MAC tag (note how the nonce is automatically generated at random):

>>> from Crypto.Hash import Poly1305
>>> from Crypto.Cipher import AES
>>>
>>> secret = b'Thirtytwo very very secret bytes'
>>> mac = Poly1305.new(key=secret, cipher=AES)
>>> mac.update(b'Hello')
>>> print("Nonce: ", mac.nonce.hex())
>>> print("MAC: ", mac.hexdigest())

This is an example showing how to validate the MAC above:

>>> from Crypto.Hash import Poly1305
>>> from Crypto.Cipher import AES
>>> from binascii import unhexlify
>>>
>>> # We have received a message 'msg' together
>>> # with its MAC 'mac_tag_hex' and the nonce 'nonce_hex'
>>>
>>> secret = b'Thirtytwo very very secret bytes'
>>> nonce = unhexlify(nonce_hex)
>>> mac = Poly1305.new(key=secret, nonce=nonce, cipher=AES, data=msg)
>>> try:
>>> mac.hexverify(mac_tag_hex)
>>> print("The message '%s' is authentic" % msg)
>>> except ValueError:
>>> print("The message or the key is wrong")

Note that you can get the MAC tag in one line:

>>> binary_tag = Poly1305.new(key=secret, cipher=AES, data=b'Hello').digest()

Or, for a hexadecimal string:

>>> hex_tag = Poly1305.new(key=secret, cipher=AES, data=b'Hello').hexdigest()

Equivalently, you can verify a tag with a single line:

>>> Poly1305.new(key=secret, cipher=AES, data=b'Hello').verify(binary_tag)

or:

>>> Poly1305.new(key=secret, cipher=AES, data=b'Hello').hexverify(hex_tag)

	
class Crypto.Hash.Poly1305.Poly1305_MAC(r, s, data)

	An Poly1305 MAC object.
Do not instantiate directly. Use the new() function.

	Variables

	digest_size (integer) – the size in bytes of the resulting MAC tag

	
digest()

	Return the binary (non-printable) MAC tag of the message
authenticated so far.

	Returns

	The MAC tag digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable MAC tag of the message authenticated so far.

	Returns

	The MAC tag, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
hexverify(hex_mac_tag)

	Verify that a given printable MAC (computed by another party)
is valid.

	Parameters

	hex_mac_tag (string) – the expected MAC of the message,
as a hexadecimal string.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
update(data)

	Authenticate the next chunk of message.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of data

	
verify(mac_tag)

	Verify that a given binary MAC (computed by another party)
is valid.

	Parameters

	mac_tag (byte string/byte string/memoryview) – the expected MAC of the message.

	Raises

	ValueError – if the MAC does not match. It means that the message
has been tampered with or that the MAC key is incorrect.

	
Crypto.Hash.Poly1305.new(**kwargs)

	Create a new Poly1305 MAC object.

	Parameters

	
	key (bytes/bytearray/memoryview) – The 32-byte key for the Poly1305 object.

	cipher (module from Crypto.Cipher) – The cipher algorithm to use for deriving the Poly1305
key pair (r, s).
It can only be Crypto.Cipher.AES or Crypto.Cipher.ChaCha20.

	nonce (bytes/bytearray/memoryview) – Optional. The non-repeatable value to use for the MAC of this message.
It must be 16 bytes long for AES and 8 or 12 bytes for ChaCha20.
If not passed, a random nonce is created; you will find it in the
nonce attribute of the new object.

	data (bytes/bytearray/memoryview) – Optional. The very first chunk of the message to authenticate.
It is equivalent to an early call to update().

	Returns

	A Poly1305_MAC object

 RIPEMD-160

RIPEMD-160

RIPEMD-160 [http://homes.esat.kuleuven.be/~bosselae/ripemd160.html] produces the 160 bit digest of a message.
For example:

>>> from Crypto.Hash import RIPEMD160
>>>
>>> h = RIPEMD160.new()
>>> h.update(b'Hello')
>>> print h.hexdigest()

RIPEMD-160 stands for RACE Integrity Primitives Evaluation Message Digest
with a 160 bit digest. It was invented by Dobbertin, Bosselaers, and Preneel.

Warning

This algorithm is not considered secure. Do not use it for new designs.

Warning

RIPEMD-160 is vulnerable to length-extension attacks [https://crypto.stackexchange.com/questions/3978/understanding-the-length-extension-attack],
which are relevant if you are computing the hash of a secret message.

For instance, let’s say you were planning to build a cheap MAC by concatenating a secret key to
a public message m (bad idea!):

\[h = \text{RIPEMD-160}(m || k)\]

By only knowing the digest h and the length of m and k, the attacker can easily compute a second digest h’:

\[h' = \text{RIPEMD-160}(m || p || z)\]

where p is a well-known bit string and the attacker can pick a bit string z at will.

	
class Crypto.Hash.RIPEMD160.RIPEMD160Hash(data=None)

	A RIPEMD-160 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(data=None)

	Create a fresh RIPEMD-160 hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.RIPEMD160.new(data=None)

	Create a new hash object.

	Parameters

	data (byte string/byte array/memoryview) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to RIPEMD160Hash.update().

	Return

	A RIPEMD160Hash hash object

 SHA-1

SHA-1

SHA-1 [http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf] produces the 160 bit digest of a message.
For example:

>>> from Crypto.Hash import SHA1
>>>
>>> h = SHA1.new()
>>> h.update(b'Hello')
>>> print h.hexdigest()

SHA stands for Secure Hash Algorithm.

Warning

This algorithm is not considered secure. Do not use it for new designs.

Warning

SHA-1 is vulnerable to length-extension attacks [https://crypto.stackexchange.com/questions/3978/understanding-the-length-extension-attack],
which are relevant if you are computing the hash of a secret message.

For instance, let’s say you were planning to build a cheap MAC by concatenating a secret key to
a public message m (bad idea!):

\[h = \text{SHA-1}(m || k)\]

By only knowing the digest h and the length of m and k, the attacker can easily compute a second digest h’:

\[h' = \text{SHA-1}(m || p || z)\]

where p is a well-known bit string and the attacker can pick a bit string z at will.

	
Crypto.SHA1.new(msg=None)

	Create a new hash object.

	Parameters

	msg (byte string) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to update().

	Returns

	A SHA1_Hash hash object

	
class Crypto.SHA1.SHA1_Hash

	A SHA-1 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
update(msg)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	msg – The next chunk of the message being hashed.

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

 SHA-224

SHA-224

SHA-224 belongs to the SHA-2 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf] family of cryptographic hashes.
It produces the 224 bit digest of a message.

>>> from Crypto.Hash import SHA224
>>>
>>> h = SHA224.new()
>>> h.update(b'Hello')
>>> print h.hexdigest()

SHA stands for Secure Hash Algorithm.

	
class Crypto.Hash.SHA224.SHA224Hash(data=None)

	A SHA-224 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(data=None)

	Create a fresh SHA-224 hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHA224.new(data=None)

	Create a new hash object.

	Parameters

	data (byte string/byte array/memoryview) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to SHA224Hash.update().

	Return

	A SHA224Hash hash object

 SHA-256

SHA-256

SHA-256 belongs to the SHA-2 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf] family of cryptographic hashes.
It produces the 256 bit digest of a message.

>>> from Crypto.Hash import SHA256
>>>
>>> h = SHA256.new()
>>> h.update(b'Hello')
>>> print h.hexdigest()

SHA stands for Secure Hash Algorithm.

Warning

SHA-256 is vulnerable to length-extension attacks [https://crypto.stackexchange.com/questions/3978/understanding-the-length-extension-attack],
which are relevant if you are computing the hash of a secret message.

For instance, let’s say you were planning to build a cheap MAC by concatenating a secret key to
a public message m (bad idea!):

\[h = \text{SHA-256}(m || k)\]

By only knowing the digest h and the length of m and k, the attacker can easily compute a second digest h’:

\[h' = \text{SHA-256}(m || p || z)\]

where p is a well-known bit string and the attacker can pick a bit string z at will.

	
class Crypto.Hash.SHA256.SHA256Hash(data=None)

	A SHA-256 hash object.
Do not instantiate directly. Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(data=None)

	Create a fresh SHA-256 hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHA256.new(data=None)

	Create a new hash object.

	Parameters

	data (byte string/byte array/memoryview) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to SHA256Hash.update().

	Return

	A SHA256Hash hash object

 SHA-384

SHA-384

SHA-384 belongs to the SHA-2 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf] family of cryptographic hashes.
It produces the 384 bit digest of a message.

SHA-384 is roughly 50% faster than SHA-224 and SHA-256 on 64-bit machines, even if its digest is longer.
The speed-up is due to the internal computation being performed with 64-bit words,
whereas the other two hash functions employ 32-bit words.

SHA-512, SHA-512/224, and SHA-512/256 too are faster on 64-bit machines for the same reason.

This is an example showing how to use SHA-384:

>>> from Crypto.Hash import SHA384
>>>
>>> h = SHA384.new()
>>> h.update(b'Hello')
>>> print(h.hexdigest())

SHA stands for Secure Hash Algorithm.

SHA-384 is not vulnerable to length-extension attacks [https://crypto.stackexchange.com/questions/3978/understanding-the-length-extension-attack].

	
class Crypto.Hash.SHA384.SHA384Hash(data=None)

	A SHA-384 hash object.
Do not instantiate directly. Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(data=None)

	Create a fresh SHA-384 hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHA384.new(data=None)

	Create a new hash object.

	Parameters

	data (byte string/byte array/memoryview) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to SHA384Hash.update().

	Return

	A SHA384Hash hash object

 SHA3-224

SHA3-224

SHA3-224 belongs to the SHA-3 family of cryptographic hashes, as specified
in FIPS 202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf].

The hash function produces the 224 bit digest of a message:

>>> from Crypto.Hash import SHA3_224
>>>
>>> h_obj = SHA3_224.new()
>>> h_obj.update(b'Some data')
>>> print h_obj.hexdigest()

SHA stands for Secure Hash Algorithm.

	
class Crypto.Hash.SHA3_224.SHA3_224_Hash(data, update_after_digest)

	A SHA3-224 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(data=None)

	Create a fresh SHA3-224 hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHA3_224.new(*args, **kwargs)

	Create a new hash object.

	Parameters

	
	data (byte string/byte array/memoryview) – The very first chunk of the message to hash.
It is equivalent to an early call to update().

	update_after_digest (boolean) – Whether digest() can be followed by another update()
(default: False).

	Return

	A SHA3_224_Hash hash object

 SHA3-256

SHA3-256

SHA3-256 belongs to the SHA-3 family of cryptographic hashes, as specified
in FIPS 202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf].

The hash function produces the 256 bit digest of a message:

>>> from Crypto.Hash import SHA3_256
>>>
>>> h_obj = SHA3_256.new()
>>> h_obj.update(b'Some data')
>>> print h_obj.hexdigest()

SHA stands for Secure Hash Algorithm.

	
class Crypto.Hash.SHA3_256.SHA3_256_Hash(data, update_after_digest)

	A SHA3-256 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(data=None)

	Create a fresh SHA3-256 hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHA3_256.new(*args, **kwargs)

	Create a new hash object.

	Parameters

	
	data (byte string/byte array/memoryview) – The very first chunk of the message to hash.
It is equivalent to an early call to update().

	update_after_digest (boolean) – Whether digest() can be followed by another update()
(default: False).

	Return

	A SHA3_256_Hash hash object

 SHA3-384

SHA3-384

SHA3-384 belongs to the SHA-3 family of cryptographic hashes, as specified
in FIPS 202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf].

The hash function produces the 384 bit digest of a message:

>>> from Crypto.Hash import SHA3_384
>>>
>>> h_obj = SHA3_384.new()
>>> h_obj.update(b'Some data')
>>> print h_obj.hexdigest()

SHA stands for Secure Hash Algorithm.

	
class Crypto.Hash.SHA3_384.SHA3_384_Hash(data, update_after_digest)

	A SHA3-384 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(data=None)

	Create a fresh SHA3-384 hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHA3_384.new(*args, **kwargs)

	Create a new hash object.

	Parameters

	
	data (byte string/byte array/memoryview) – The very first chunk of the message to hash.
It is equivalent to an early call to update().

	update_after_digest (boolean) – Whether digest() can be followed by another update()
(default: False).

	Return

	A SHA3_384_Hash hash object

 SHA3-512

SHA3-512

SHA3-512 belongs to the SHA-3 family of cryptographic hashes, as specified
in FIPS 202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf].

The hash function produces the 512 bit digest of a message:

>>> from Crypto.Hash import SHA3_512
>>>
>>> h_obj = SHA3_512.new()
>>> h_obj.update(b'Some data')
>>> print h_obj.hexdigest()

SHA stands for Secure Hash Algorithm.

	
class Crypto.Hash.SHA3_512.SHA3_512_Hash(data, update_after_digest)

	A SHA3-512 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(data=None)

	Create a fresh SHA3-521 hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHA3_512.new(*args, **kwargs)

	Create a new hash object.

	Parameters

	
	data (byte string/byte array/memoryview) – The very first chunk of the message to hash.
It is equivalent to an early call to update().

	update_after_digest (boolean) – Whether digest() can be followed by another update()
(default: False).

	Return

	A SHA3_512_Hash hash object

 SHA-512, SHA-512/224, SHA-512/256

SHA-512, SHA-512/224, SHA-512/256

SHA-512 and its two truncated variants (SHA-512/224 and SHA-512/256) belong to the SHA-2 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf] family of cryptographic hashes.
The three functions produce the digest of a message, respectively 512, 224 or 256 bits long.

SHA-512 is roughly 50% faster than SHA-224 and SHA-256 on 64-bit machines, even if its digest is longer.
The speed-up is due to the internal computation being performed with 64-bit words,
whereas the other two hash functions employ 32-bit words.

SHA-512/224, SHA-512/256, and SHA-384 too are faster on 64-bit machines for the same reason.

This is an example showing how to use SHA-512:

>>> from Crypto.Hash import SHA512
>>>
>>> h = SHA512.new()
>>> h.update(b'Hello')
>>> print(h.hexdigest())
3615f80c9d293ed7402687f94b22d58e529b8cc7916f8fac7fddf7fbd5af4cf777d3d795a7a00a16bf7e7f3fb9561ee9baae480da9fe7a18769e71886b03f315

This is an example showing how to use SHA-512/256:

>>> from Crypto.Hash import SHA512
>>>
>>> h = SHA512.new(truncate="256")
>>> h.update(b'Hello')
>>> print(h.hexdigest())
7e75b18b88d2cb8be95b05ec611e54e2460408a2dcf858f945686446c9d07aac

SHA stands for Secure Hash Algorithm.

Warning

SHA-512 is vulnerable to length-extension attacks [https://crypto.stackexchange.com/questions/3978/understanding-the-length-extension-attack],
which are relevant if you are computing the hash of a secret message.

For instance, let’s say you were planning to build a cheap MAC by concatenating a secret key to
a public message m (bad idea!):

\[h = \text{SHA-512}(m || k)\]

By only knowing the digest h and the length of m and k, the attacker can easily compute a second digest h’:

\[h' = \text{SHA-512}(m || p || z)\]

where p is a well-known bit string and the attacker can pick a bit string z at will.

The two variants SHA-512/224 and SHA-512/256 are not vulnerable to
length-extension attacks.

	
class Crypto.Hash.SHA512.SHA512Hash(data, truncate)

	A SHA-512 hash object (possibly in its truncated version SHA-512/224 or
SHA-512/256.
Do not instantiate directly. Use the new() function.

	Variables

	
	oid (string) – ASN.1 Object ID

	block_size (integer) – the size in bytes of the internal message block,
input to the compression function

	digest_size (integer) – the size in bytes of the resulting hash

	
copy()

	Return a copy (“clone”) of the hash object.

The copy will have the same internal state as the original hash
object.
This can be used to efficiently compute the digests of strings that
share a common initial substring.

	Returns

	A hash object of the same type

	
digest()

	Return the binary (non-printable) digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the message that has been hashed so far.

	Returns

	The hash digest, computed over the data processed so far.
Hexadecimal encoded.

	Return type

	string

	
new(data=None)

	Create a fresh SHA-512 hash object.

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHA512.new(data=None, truncate=None)

	Create a new hash object.

	Parameters

	
	data (bytes/bytearray/memoryview) – Optional. The very first chunk of the message to hash.
It is equivalent to an early call to SHA512Hash.update().

	truncate (string) – Optional. The desired length of the digest. It can be either “224” or
“256”. If not present, the digest is 512 bits long.
Passing this parameter is not equivalent to simply truncating
the output digest.

	Return

	A SHA512Hash hash object

 SHAKE128

SHAKE128

SHAKE128 is an extendable-output function (XOF) in the SHA-3 family, as specified in FIPS 202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf].

As a XOF, SHAKE128 is a generalization of a cryptographic hash function.
Instead of creating a fixed-length digest (e.g. 32 bytes like SHA-2/256),
it can produce outputs of any desired length.

Output bits do not depend on the output length.

The 128 in its name indicates its maximum security level (in bits),
as described in Sections A.1 and A.2 of FIPS 202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf].

In the following example, the output is 26 bytes (208 bits) long:

>>> from Crypto.Hash import SHAKE128
>>>
>>> shake = SHAKE128.new()
>>> shake.update(b'Some data')
>>> print(shake.read(26).hex())

	
class Crypto.Hash.SHAKE128.SHAKE128_XOF(data=None)

	A SHAKE128 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	oid (string) – ASN.1 Object ID

	
read(length)

	Compute the next piece of XOF output.

Note

You cannot use update() anymore after the first call to
read().

	Parameters

	length (integer) – the amount of bytes this method must return

	Returns

	the next piece of XOF output (of the given length)

	Return type

	byte string

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHAKE128.new(data=None)

	Return a fresh instance of a SHAKE128 object.

	Parameters

	data (bytes/bytearray/memoryview) – The very first chunk of the message to hash.
It is equivalent to an early call to update().
Optional.

	Return

	A SHAKE128_XOF object

 SHAKE256

SHAKE256

SHAKE256 is an extendable-output function (XOF) in the SHA-3 family, as specified in FIPS 202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf].

As a XOF, SHAKE256 is a generalization of a cryptographic hash function.
Instead of creating a fixed-length digest (e.g. 32 bytes like SHA-2/256),
it can produce outputs of any desired length.

Output bits do not depend on the output length.

The 256 in its name indicates its maximum security level (in bits),
as described in Sections A.1 and A.2 of FIPS 202 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf].

In the following example, the output is 26 bytes (208 bits) long:

>>> from Crypto.Hash import SHAKE256
>>>
>>> shake = SHAKE256.new()
>>> shake.update(b'Some data')
>>> print(shake.read(26).hex())

	
class Crypto.Hash.SHAKE256.SHAKE256_XOF(data=None)

	A SHAKE256 hash object.
Do not instantiate directly.
Use the new() function.

	Variables

	oid (string) – ASN.1 Object ID

	
read(length)

	Compute the next piece of XOF output.

Note

You cannot use update() anymore after the first call to
read().

	Parameters

	length (integer) – the amount of bytes this method must return

	Returns

	the next piece of XOF output (of the given length)

	Return type

	byte string

	
update(data)

	Continue hashing of a message by consuming the next chunk of data.

	Parameters

	data (byte string/byte array/memoryview) – The next chunk of the message being hashed.

	
Crypto.Hash.SHAKE256.new(data=None)

	Return a fresh instance of a SHAKE256 object.

	Parameters

	data (bytes/bytearray/memoryview) – The very first chunk of the message to hash.
It is equivalent to an early call to update().
Optional.

	Return

	A SHAKE256_XOF object

 TupleHash128

TupleHash128

TupleHash128 is a variable-lengh hash function for tuples of byte strings,
derived from SHA-3, and standardized in NIST SP 800-185 [https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-185.pdf].

TupleHash128 provides a robust way to hash a sequence of byte strings,
while maintaining the semantics of each single string, and with a security strength of 128 bits.

For example, let’s assume that a banking application combines the following strings
to validate a money transfer: deposit, amount (e.g., 100), and username (e.g., joe).
The application uses SHA256 and naively concatenates the strings to obtain a credential to authorize the operation:

SHA256("deposit100joe")

A malicious user could register a second user 000joe,
so that the system computes, for the same small transfer:

SHA256("deposit100000joe")

which is also the same credential that authorizes a much larger transfer to the other user joe.

TupleHash128 makes the composition of all strings into a digest more robust
by ensuring that the size of each individual byte string is considered.
Each byte string is submitted in its entirety via the update() method.

This is an example showing how to generate a TupleHash128 for the 3 bytes strings above:

>>> from Crypto.Hash import TupleHash128
>>>
>>> hd = TupleHash128.new(digest_bytes=16)
>>> hd.update(b'deposit')
>>> hd.update(b'100')
>>> hd.update(b'joe')
>>> print(hd.hexdigest())
4c095be894c21cfe7076a7d0fe3f70ed

Any or even all the byte strings in the sequence can be empty.
An empty byte string is significant: calling update(b'') will still contribute to and modify the final digest.

An application can select the length of the digest by means of the initialization parameters digest_bytes or digest_bits.
For instance, while the traditional SHA256 can only produce 32-byte tags,
with TupleHash128 you can produce a 16-byte tag (see the example above) but also a 33-byte tag:

>>> from Crypto.Hash import TupleHash128
>>>
>>> hd = TupleHash128.new(digest_bytes=33)
>>> hd.update(b'deposit')
>>> hd.update(b'100')
>>> hd.update(b'joe')
>>> print(hd.hexdigest())
23339e4f61527ade355f11e0496766bf929435eaff1ad20ad9bf9e01fddbe307

Note how the 16-byte digest is NOT just the truncated version of the 33-byte digest: they are cryptographically uncorrelated.

	
class Crypto.Hash.TupleHash128.TupleHash(custom, cshake, digest_size)

	A Tuple hash object.
Do not instantiate directly.
Use the new() function.

	
digest()

	Return the binary (non-printable) digest of the tuple of byte strings.

	Returns

	The hash digest. Binary form.

	Return type

	byte string

	
hexdigest()

	Return the printable digest of the tuple of byte strings.

	Returns

	The hash digest. Hexadecimal encoded.

	Return type

	string

	
new(**kwargs)

	Return a new instance of a TupleHash object.
See new().

	
update(data)

	Authenticate the next byte string in the tuple.

	Parameters

	data (bytes/bytearray/memoryview) – The next byte string.

	
Crypto.Hash.TupleHash128.new(**kwargs)

	Create a new TupleHash128 object.

	Parameters

	
	digest_bytes (integer) – Optional. The size of the digest, in bytes.
Default is 64. Minimum is 8.

	digest_bits (integer) – Optional and alternative to digest_bytes.
The size of the digest, in bits (and in steps of 8).
Default is 512. Minimum is 64.

	custom (bytes) – Optional.
A customization bytestring (S in SP 800-185).

	Return

	A TupleHash object

 TupleHash256

TupleHash256

TupleHash256 is a variable-lengh hash function for tuples of byte strings,
derived from SHA-3, and standardized in NIST SP 800-185 [https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-185.pdf].

TupleHash256 provides a robust way to hash a sequence of byte strings,
while maintaining the semantics of each single string, and with a security strength of 256 bits.

For example, let’s assume that a banking application combines the following strings
to validate a money transfer: deposit, amount (e.g., 100), and username (e.g., joe).
The application uses SHA256 and naively concatenates the strings to obtain a credential to authorize the operation:

SHA256("deposit100joe")

A malicious user could register a second user 000joe,
so that the system computes, for the same small transfer:

SHA256("deposit100000joe")

which is also the same credential that authorizes a much larger transfer to the other user joe.

TupleHash256 makes the composition of all strings into a digest more robust
by ensuring that the size of each individual byte string is considered.
Each byte string is submitted in its entirety via the update() method.

This is an example showing how to generate a TupleHash256 for the 3 bytes strings above:

>>> from Crypto.Hash import TupleHash256
>>>
>>> hd = TupleHash256.new(digest_bytes=16)
>>> hd.update(b'deposit')
>>> hd.update(b'100')
>>> hd.update(b'joe')
>>> print(hd.hexdigest())
b101225b7e5f1f086fc6d0be01abfa1e

Any or even all the byte strings in the sequence can be empty.
An empty byte string is significant: calling update(b'') will still contribute to and modify the final digest.

An application can select the length of the digest by means of the initialization parameters digest_bytes or digest_bits.
For instance, while the traditional SHA256 can only produce 32-byte tags,
with TupleHash256 you can produce a 16-byte tag (see the example above) but also a 33-byte tag:

>>> from Crypto.Hash import TupleHash256
>>>
>>> hd = TupleHash256.new(digest_bytes=33)
>>> hd.update(b'deposit')
>>> hd.update(b'100')
>>> hd.update(b'joe')
>>> print(hd.hexdigest())
29cbb43b90e19bfebf7ff0acfa651a889f106486dae9f9f42c34a48e1b8a7bfa6f

Note how the 16-byte digest is NOT just the truncated version of the 33-byte digest: they are cryptographically uncorrelated.

	
Crypto.Hash.TupleHash256.new(**kwargs)

	Create a new TupleHash256 object.

	Parameters

	
	digest_bytes (integer) – Optional. The size of the digest, in bytes.
Default is 64. Minimum is 8.

	digest_bits (integer) – Optional and alternative to digest_bytes.
The size of the digest, in bits (and in steps of 8).
Default is 512. Minimum is 64.

	custom (bytes) – Optional.
A customization bytestring (S in SP 800-185).

	Return

	A TupleHash object

 Digital Signature Algorithm (DSA and ECDSA)

Digital Signature Algorithm (DSA and ECDSA)

DSA and ECDSA are U.S. federal standards for digital signatures, specified in FIPS PUB 186-4 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf].

Their security relies on the discrete logarithm problem in a prime finite field (the original DSA,
now deprecated) or in an elliptic curve field (ECDSA, faster and with smaller keys,
to be used in new applications).

A sender can use a private key (loaded from a file) to sign a message:

>>> from Crypto.Hash import SHA256
>>> from Crypto.PublicKey import ECC
>>> from Crypto.Signature import DSS
>>>
>>> message = b'I give my permission to order #4355'
>>> key = ECC.import_key(open('privkey.der').read())
>>> h = SHA256.new(message)
>>> signer = DSS.new(key, 'fips-186-3')
>>> signature = signer.sign(h)

The receiver can use the matching public key to verify authenticity of the received message:

>>> from Crypto.Hash import SHA256
>>> from Crypto.PublicKey import ECC
>>> from Crypto.Signature import DSS
>>>
>>> key = ECC.import_key(open('pubkey.der').read())
>>> h = SHA256.new(received_message)
>>> verifier = DSS.new(key, 'fips-186-3')
>>> try:
>>> verifier.verify(h, signature)
>>> print "The message is authentic."
>>> except ValueError:
>>> print "The message is not authentic."

	
class Crypto.Signature.DSS.DssSigScheme(key, encoding, order)

	A (EC)DSA signature object.
Do not instantiate directly.
Use Crypto.Signature.DSS.new().

	
can_sign()

	Return True if this signature object can be used
for signing messages.

	
sign(msg_hash)

	Compute the DSA/ECDSA signature of a message.

	Parameters

	msg_hash (hash object) – The hash that was carried out over the message.
The object belongs to the Crypto.Hash package.
Under mode 'fips-186-3', the hash must be a FIPS
approved secure hash (SHA-2 or SHA-3).

	Returns

	The signature as bytes

	Raises

	
	ValueError – if the hash algorithm is incompatible to the (EC)DSA key

	TypeError – if the (EC)DSA key has no private half

	
verify(msg_hash, signature)

	Check if a certain (EC)DSA signature is authentic.

	Parameters

	
	msg_hash (hash object) – The hash that was carried out over the message.
This is an object belonging to the Crypto.Hash module.
Under mode 'fips-186-3', the hash must be a FIPS
approved secure hash (SHA-2 or SHA-3).

	signature (bytes) – The signature that needs to be validated.

	Raises

	ValueError – if the signature is not authentic

	
Crypto.Signature.DSS.new(key, mode, encoding='binary', randfunc=None)

	Create a signature object DssSigScheme that
can perform (EC)DSA signature or verification.

Note

Refer to NIST SP 800 Part 1 Rev 4 [http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf] (or newer release) for an
overview of the recommended key lengths.

	Parameters

	
	key (Crypto.PublicKey.DSA or Crypto.PublicKey.ECC) – The key to use for computing the signature (private keys only)
or for verifying one.
For DSA keys, let L and N be the bit lengths of the modulus p
and of q: the pair (L,N) must appear in the following list,
in compliance to section 4.2 of FIPS 186-4 [http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf]:

	(1024, 160) legacy only; do not create new signatures with this

	(2048, 224) deprecated; do not create new signatures with this

	(2048, 256)

	(3072, 256)

For ECC, only keys over P-224, P-256, P-384, and P-521 are accepted.

	mode (string) – The parameter can take these values:

	'fips-186-3'. The signature generation is randomized and carried out
according to FIPS 186-3 [http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf]: the nonce k is taken from the RNG.

	'deterministic-rfc6979'. The signature generation is not
randomized. See RFC6979 [http://tools.ietf.org/html/rfc6979].

	encoding (string) – How the signature is encoded. This value determines the output of
sign() and the input to verify().

The following values are accepted:

	'binary' (default), the signature is the raw concatenation
of r and s. It is defined in the IEEE P.1363 standard.
For DSA, the size in bytes of the signature is N/4 bytes
(e.g. 64 for N=256).
For ECDSA, the signature is always twice the length of a point
coordinate (e.g. 64 bytes for P-256).

	'der', the signature is a ASN.1 DER SEQUENCE
with two INTEGERs (r and s). It is defined in RFC3279 [https://tools.ietf.org/html/rfc3279#section-2.2.2].
The size of the signature is variable.

	randfunc (callable) – A function that returns random bytes, of a given length.
If omitted, the internal RNG is used.
Only applicable for the ‘fips-186-3’ mode.

 Edwards-curve Digital Signature Algorithm (EdDSA)

Edwards-curve Digital Signature Algorithm (EdDSA)

EdDSA is a deterministic digital signature scheme
based on twisted Edwards elliptic curves (Ed25519 and Ed448).
It is specified in RFC8032 [https://datatracker.ietf.org/doc/html/rfc8032],
as two variants:

	PureEdDSA, where the message is signed directly.

	HashEdDSA, where the message is first hashed, and only the resulting digest is signed.
This should only be used by streaming applications because it avoids double passess
on messages, at the cost of reduced collision resistance.

This module supports signatures for both variants (PureEdDSA and HashEdDSA),
on the Ed25519 curve (with a 128-bit security level), and
on the Ed448 curve (with a 224-bit security level).

For HashEdDSA, the hash function must be SHA-512 in case of Ed25519,
and SHAKE256 for Ed448.

A sender can use a private key (loaded from a file) to sign a message:

from Crypto.PublicKey import ECC
from Signature import eddsa

message = b'I give my permission to order #4355'
key = ECC.import_key(open("private_ed25519.pem").read()))
signer = eddsa.new(key, 'rfc8032')
signature = signer.sign(message)

The receiver can use the matching public key to verify authenticity of the received message:

from Crypto.PublicKey import ECC
from Signature import eddsa

message = b'I give my permission to order #4355'
key = ECC.import_key(open("public_ed25519.pem").read()))
verifier = eddsa.new(key, 'rfc8032')
try:
 verifier.verify(message, signature)
 print("The message is authentic")
except ValueError:
 print("The message is not authentic")

Alternatively the HashedEdDSA variant can be used to sign a message with Ed25519:

from Crypto.PublicKey import ECC
from Signature import eddsa
from Crypto.Hash import SHA512

message = b'I give my permission to order #4355'
prehashed_message = SHA512.new(message)
key = ECC.import_key(open("private_ed25519.pem").read()))
signer = eddsa.new(key, 'rfc8032')
signature = signer.sign(prehashed_message)

HashedEdDSA also exists for Ed448:

from Crypto.PublicKey import ECC
from Signature import eddsa
from Crypto.Hash import SHAKE256

message = b'I give my permission to order #4355'
prehashed_message = SHAKE256.new(message)
key = ECC.import_key(open("private_ed448.pem").read()))
signer = eddsa.new(key, 'rfc8032')
signature = signer.sign(prehashed_message)

	
class Crypto.Signature.eddsa.EdDSASigScheme(key, context)

	An EdDSA signature object.
Do not instantiate directly.
Use Crypto.Signature.eddsa.new().

	
can_sign()

	Return True if this signature object can be used
for signing messages.

	
sign(msg_or_hash)

	Compute the EdDSA signature of a message.

	Parameters

	msg_or_hash (bytes or a hash object) – The message to sign (bytes, in case of PureEdDSA) or
the hash that was carried out over the message (hash object, for HashEdDSA).

The hash object must be Crypto.Hash.SHA512 for Ed25519,
and Crypto.Hash.SHAKE256 object for Ed448.

	Returns

	The signature as bytes. It is always 64 bytes for Ed25519, and 114 bytes for Ed448.

	Raises

	TypeError – if the EdDSA key has no private half

	
verify(msg_or_hash, signature)

	Check if an EdDSA signature is authentic.

	Parameters

	
	msg_or_hash (bytes or a hash object) – The message to verify (bytes, in case of PureEdDSA) or
the hash that was carried out over the message (hash object, for HashEdDSA).

The hash object must be Crypto.Hash.SHA512 object for Ed25519,
and Crypto.Hash.SHAKE256 for Ed448.

	signature (bytes) – The signature that needs to be validated.
It must be 64 bytes for Ed25519, and 114 bytes for Ed448.

	Raises

	ValueError – if the signature is not authentic

	
Crypto.Signature.eddsa.import_private_key(encoded)

	Create a new Ed25519 or Ed448 private key object,
starting from the key encoded as raw bytes,
in the format described in RFC8032.

	Parameters

	encoded (bytes) – The EdDSA private key to import.
It must be 32 bytes for Ed25519, and 57 bytes for Ed448.

	Returns

	a new ECC key object.

	Return type

	Crypto.PublicKey.EccKey

	Raises

	ValueError – when the given key cannot be parsed.

	
Crypto.Signature.eddsa.import_public_key(encoded)

	Create a new Ed25519 or Ed448 public key object,
starting from the key encoded as raw bytes,
in the format described in RFC8032.

	Parameters

	encoded (bytes) – The EdDSA public key to import.
It must be 32 bytes for Ed25519, and 57 bytes for Ed448.

	Returns

	a new ECC key object.

	Return type

	Crypto.PublicKey.EccKey

	Raises

	ValueError – when the given key cannot be parsed.

	
Crypto.Signature.eddsa.new(key, mode, context=None)

	Create a signature object EdDSASigScheme that
can perform or verify an EdDSA signature.

	Parameters

	
	key (Crypto.PublicKey.ECC object) – The key to use for computing the signature (private keys only)
or for verifying one.
The key must be on the curve Ed25519 or Ed448.

	mode (string) – This parameter must be 'rfc8032'.

	context (bytes) – Up to 255 bytes of context [https://datatracker.ietf.org/doc/html/rfc8032#page-41],
which is a constant byte string to segregate different protocols or
different applications of the same key.

 PKCS#1 PSS (RSA)

PKCS#1 PSS (RSA)

A probabilistic digital signature scheme based on RSA.

It is more formally called RSASSA-PSS
in Section 8.1 of RFC8017 [https://tools.ietf.org/html/rfc8017#section-8.1].

The following example shows how the sender can use its own private key
(loaded from a file) to create the signature of a message:

>>> from Crypto.Signature import pss
>>> from Crypto.Hash import SHA256
>>> from Crypto.PublicKey import RSA
>>> from Crypto import Random
>>>
>>> message = 'To be signed'
>>> key = RSA.import_key(open('privkey.der').read())
>>> h = SHA256.new(message)
>>> signature = pss.new(key).sign(h)

At the receiver side, the matching public RSA key is used to verify
authenticity of the incoming message:

>>> key = RSA.import_key(open('pubkey.der').read())
>>> h = SHA256.new(message)
>>> verifier = pss.new(key)
>>> try:
>>> verifier.verify(h, signature)
>>> print "The signature is authentic."
>>> except (ValueError, TypeError):
>>> print "The signature is not authentic."

	
Crypto.Signature.pss.MGF1(mgfSeed, maskLen, hash_gen)

	Mask Generation Function, described in B.2.1 of RFC8017 [https://tools.ietf.org/html/rfc8017].

	Parameters

	
	mfgSeed (byte string) – seed from which the mask is generated

	maskLen (integer) – intended length in bytes of the mask

	hash_gen – A module or a hash object from Crypto.Hash

	Returns

	the mask, as a byte string

	
class Crypto.Signature.pss.PSS_SigScheme(key, mgfunc, saltLen, randfunc)

	A signature object for RSASSA-PSS.
Do not instantiate directly.
Use Crypto.Signature.pss.new().

	
can_sign()

	Return True if this object can be used to sign messages.

	
sign(msg_hash)

	Create the PKCS#1 PSS signature of a message.

This function is also called RSASSA-PSS-SIGN and
it is specified in
section 8.1.1 of RFC8017 [https://tools.ietf.org/html/rfc8017#section-8.1.1].

	Parameters

	msg_hash (hash object) – This is an object from the Crypto.Hash package.
It has been used to digest the message to sign.

	Returns

	the signature encoded as a byte string.

	Raises

	
	ValueError – if the RSA key is not long enough for the given hash algorithm.

	TypeError – if the RSA key has no private half.

	
verify(msg_hash, signature)

	Check if the PKCS#1 PSS signature over a message is valid.

This function is also called RSASSA-PSS-VERIFY and
it is specified in
section 8.1.2 of RFC8037 [https://tools.ietf.org/html/rfc8017#section-8.1.2].

	Parameters

	
	msg_hash – The hash that was carried out over the message. This is an object
belonging to the Crypto.Hash module.

	signature (bytes) – The signature that needs to be validated.

	Raises

	ValueError – if the signature is not valid.

	
Crypto.Signature.pss.new(rsa_key, **kwargs)

	Create an object for making or verifying PKCS#1 PSS signatures.

	Parameters

	rsa_key (RSA object) – The RSA key to use for signing or verifying the message.
This is a Crypto.PublicKey.RSA object.
Signing is only possible when rsa_key is a private RSA key.

	Keyword Arguments

	
	mask_func (callable) –
A function that returns the mask (as bytes).
It must accept two parameters: a seed (as bytes)
and the length of the data to return.

If not specified, it will be the function MGF1() defined in
RFC8017 [https://tools.ietf.org/html/rfc8017#page-67] and
combined with the same hash algorithm applied to the
message to sign or verify.

If you want to use a different function, for instance still MGF1()
but together with another hash, you can do:

from Crypto.Hash import SHA256
from Crypto.Signature.pss import MGF1
mgf = lambda x, y: MGF1(x, y, SHA256)

	salt_bytes (integer) –
Length of the salt, in bytes.
It is a value between 0 and emLen - hLen - 2, where emLen
is the size of the RSA modulus and hLen is the size of the digest
applied to the message to sign or verify.

The salt is generated internally, you don’t need to provide it.

If not specified, the salt length will be hLen.
If it is zero, the signature scheme becomes deterministic.

Note that in some implementations such as OpenSSL the default
salt length is emLen - hLen - 2 (even though it is not more
secure than hLen).

	rand_func (callable) –
A function that returns random bytes, of the desired length.
The default is Crypto.Random.get_random_bytes().

	Returns

	a PSS_SigScheme signature object

 PKCS#1 v1.5 (RSA)

PKCS#1 v1.5 (RSA)

An old but still solid digital signature scheme based on RSA.

It is more formally called RSASSA-PKCS1-v1_5
in Section 8.2 of RFC8017 [https://tools.ietf.org/html/rfc8017].

The following example shows how a private RSA key (loaded from a file)
can be used to compute the signature of a message:

>>> from Crypto.Signature import pkcs1_15
>>> from Crypto.Hash import SHA256
>>> from Crypto.PublicKey import RSA
>>>
>>> message = b'To be signed'
>>> key = RSA.import_key(open('private_key.der').read())
>>> h = SHA256.new(message)
>>> signature = pkcs1_15.new(key).sign(h)

At the other end, the receiver can verify the signature (and therefore
the authenticity of the message) using the matching public RSA key:

>>> key = RSA.import_key(open('public_key.der').read())
>>> h = SHA256.new(message)
>>> try:
>>> pkcs1_15.new(key).verify(h, signature)
>>> print "The signature is valid."
>>> except (ValueError, TypeError):
>>> print "The signature is not valid."

	
class Crypto.Signature.pkcs1_15.PKCS115_SigScheme(rsa_key)

	A signature object for RSASSA-PKCS1-v1_5.
Do not instantiate directly.
Use Crypto.Signature.pkcs1_15.new().

	
can_sign()

	Return True if this object can be used to sign messages.

	
sign(msg_hash)

	Create the PKCS#1 v1.5 signature of a message.

This function is also called RSASSA-PKCS1-V1_5-SIGN and
it is specified in
section 8.2.1 of RFC8017 [https://tools.ietf.org/html/rfc8017#page-36].

	Parameters

	msg_hash (hash object) – This is an object from the Crypto.Hash package.
It has been used to digest the message to sign.

	Returns

	the signature encoded as a byte string.

	Raises

	
	ValueError – if the RSA key is not long enough for the given hash algorithm.

	TypeError – if the RSA key has no private half.

	
verify(msg_hash, signature)

	Check if the PKCS#1 v1.5 signature over a message is valid.

This function is also called RSASSA-PKCS1-V1_5-VERIFY and
it is specified in
section 8.2.2 of RFC8037 [https://tools.ietf.org/html/rfc8017#page-37].

	Parameters

	
	msg_hash – The hash that was carried out over the message. This is an object
belonging to the Crypto.Hash module.

	signature (byte string) – The signature that needs to be validated.

	Raises

	ValueError – if the signature is not valid.

	
Crypto.Signature.pkcs1_15.new(rsa_key)

	Create a signature object for creating
or verifying PKCS#1 v1.5 signatures.

	Parameters

	rsa_key (RSA object) – The RSA key to use for signing or verifying the message.
This is a Crypto.PublicKey.RSA object.
Signing is only possible when rsa_key is a private RSA key.

	Returns

	a PKCS115_SigScheme signature object

_images/simple_mode.png
Initialized

encrypt() decrypt()

encrypt() decrypt()

Encrypting - Decrypting -

_images/siv.png
Initialized

update()

Hashing

encrypt_and_digest() T decrypt_and_verify(

update()

verify()
[Jammo [T,

_static/comment-bright.png

_images/xof.png
update()

read() update()

read(N)

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyCryptodome’s documentation

 		
 PyCryptodome

 		
 Features

 		
 Installation

 		
 Compiling in Linux Ubuntu

 		
 Compiling in Linux Fedora

 		
 Windows (from sources)

 		
 Documentation

 		
 PGP verification

 		
 Compatibility with PyCrypto

 		
 API documentation

 		
 Examples

 		
 Encrypt data with AES

 		
 Generate an RSA key

 		
 Generate public key and private key

 		
 Encrypt data with RSA

 		
 Frequently Asked Questions

 		
 Is CTR cipher mode compatible with Java?

 		
 Are RSASSA-PSS signatures compatible with Java?

 		
 Are RSASSA-PSS signatures compatible with OpenSSL?

 		
 Why do I get the error No module named Crypto on Windows?

 		
 Why does strxor raise TypeError: argument 2 must be bytes, not bytearray?

 		
 Why do I get a translation_unit_or_empty undefined error with pycparser?

 		
 Contribute and support

 		
 Future plans

 		
 Changelog

 		
 3.18.0 (18 May 2023)

 		
 New features

 		
 3.17.0 (29 January 2023)

 		
 New features

 		
 Resolved issues

 		
 Other changes

 		
 3.16.0 (26 November 2022)

 		
 New features

 		
 Resolved issues

 		
 3.15.0 (22 June 2022)

 		
 New features

 		
 Resolved issues

 		
 3.14.1 (5 February 2022)

 		
 Resolved issues

 		
 3.14.0 (30 January 2022)

 		
 New features

 		
 3.13.0 (23 January 2022)

 		
 New features

 		
 Resolved issues

 		
 Other changes

 		
 3.12.0 (4 December 2021)

 		
 New features

 		
 Resolved issues

 		
 3.11.0 (8 October 2021)

 		
 Resolved issues

 		
 New features

 		
 3.10.4 (25 September 2021)

 		
 Resolved issues

 		
 3.10.3 (22 September 2021)

 		
 Resolved issues

 		
 New features

 		
 Other changes

 		
 3.10.1 (9 February 2021)

 		
 Other changes

 		
 3.10.0 (6 February 2021)

 		
 Resolved issues

 		
 Other changes

 		
 Breaks in compatibility

 		
 3.9.9 (2 November 2020)

 		
 Resolved issues

 		
 New features

 		
 3.9.8 (23 June 2020)

 		
 Resolved issues

 		
 New features

 		
 3.9.7 (20 February 2020)

 		
 Resolved issues

 		
 3.9.6 (2 February 2020)

 		
 Resolved issues

 		
 3.9.5 (1 February 2020)

 		
 Resolved issues

 		
 New features

 		
 3.9.4 (18 November 2019)

 		
 Resolved issues

 		
 3.9.3 (12 November 2019)

 		
 Resolved issues

 		
 3.9.2 (10 November 2019)

 		
 New features

 		
 Resolved issues

 		
 3.9.1 (1 November 2019)

 		
 New features

 		
 Resolved issues

 		
 3.9.0 (27 August 2019)

 		
 New features

 		
 Resolved issues

 		
 3.8.2 (30 May 2019)

 		
 Resolved issues

 		
 3.8.1 (4 April 2019)

 		
 New features

 		
 Resolved issues

 		
 3.8.0 (23 March 2019)

 		
 New features

 		
 Resolved issues

 		
 Breaks in compatibility

 		
 3.7.3 (19 January 2019)

 		
 Resolved issues

 		
 3.7.2 (26 November 2018)

 		
 Resolved issues

 		
 3.7.1 (25 November 2018)

 		
 New features

 		
 Resolved issues

 		
 3.7.0 (27 October 2018)

 		
 New features

 		
 Resolved issues

 		
 Breaks in compatibility

 		
 3.6.6 (17 August 2018)

 		
 Resolved issues

 		
 3.6.5 (12 August 2018)

 		
 Resolved issues

 		
 3.6.4 (10 July 2018)

 		
 New features

 		
 Resolved issues

 		
 3.6.3 (21 June 2018)

 		
 Resolved issues

 		
 3.6.2 (19 June 2018)

 		
 New features

 		
 Resolved issues

 		
 Breaks in compatibility

 		
 3.6.1 (15 April 2018)

 		
 New features

 		
 Resolved issues

 		
 3.6.0 (8 April 2018)

 		
 New features

 		
 Resolved issues

 		
 3.5.1 (8 March 2018)

 		
 Resolved issues

 		
 3.5.0 (7 March 2018)

 		
 New features

 		
 Resolved issues

 		
 Breaks in compatibility

 		
 3.4.12 (5 February 2018)

 		
 Resolved issues

 		
 3.4.11 (5 February 2018)

 		
 Resolved issues

 		
 3.4.10 (2 February 2018)

 		
 Resolved issues

 		
 3.4.9 (1 February 2018)

 		
 New features

 		
 Resolved issues

 		
 3.4.8 (27 January 2018)

 		
 New features

 		
 Resolved issues

 		
 3.4.7 (26 August 2017)

 		
