
PyCryptodome Documentation
Release 3.6.1

Legrandin

Jun 19, 2018

Contents

1 PyCryptodome 3

2 Features 5

3 Installation 9
3.1 Compiling in Linux Ubuntu . 9
3.2 Compiling in Linux Fedora . 10
3.3 Windows (from sources, Python 2.x, Python <=3.2) . 10
3.4 Windows (from sources, Python 3.3 and 3.4) . 11
3.5 Windows (from sources, Python 3.5 and newer) . 12
3.6 Documentation . 12
3.7 PGP verification . 13

4 Compatibility with PyCrypto 15

5 API documentation 17
5.1 Crypto.Cipher package . 17

5.1.1 Introduction . 17
5.1.2 API principles . 17
5.1.3 Symmetric ciphers . 18
5.1.4 Legacy ciphers . 24

5.2 Crypto.Signature package . 24
5.2.1 Signing a message . 25
5.2.2 Verifying a signature . 25
5.2.3 Available mechanisms . 25

5.3 Crypto.Hash package . 25
5.3.1 API principles . 25
5.3.2 Attributes of hash objects . 27
5.3.3 Modern hash algorithms . 27
5.3.4 Extensible-Output Functions (XOF) . 28
5.3.5 Message Authentication Code (MAC) algorithms . 28
5.3.6 Historich hash algorithms . 28

5.4 Crypto.PublicKey package . 28
5.4.1 API principles . 28
5.4.2 Available key types . 29
5.4.3 Obsolete key type . 41

5.5 Crypto.Protocol package . 43

i

5.5.1 Key Derivation Functions . 43
5.5.2 Secret Sharing Schemes . 45

5.6 Crypto.IO package . 47
5.6.1 PEM . 47
5.6.2 PKCS#8 . 47

5.7 Crypto.Random package . 49
5.7.1 Crypto.Random.random module . 49

5.8 Crypto.Util package . 49
5.8.1 Crypto.Util.asn1 module . 50
5.8.2 Crypto.Util.Padding module . 54
5.8.3 Crypto.Util.RFC1751 module . 55
5.8.4 Crypto.Util.strxor module . 55
5.8.5 Crypto.Util.Counter module . 56
5.8.6 Crypto.Util.number module . 57

6 Examples 61
6.1 Encrypt data with AES . 61
6.2 Generate an RSA key . 62
6.3 Generate public key and private key . 62
6.4 Encrypt data with RSA . 62

7 Contribute and support 65

8 Future plans 67

9 Changelog 69
9.1 3.6.1 (15 April 2018) . 69

9.1.1 New features . 69
9.1.2 Resolved issues . 69

9.2 3.6.0 (8 April 2018) . 69
9.2.1 New features . 69
9.2.2 Resolved issues . 70

9.3 3.5.1 (8 March 2018) . 70
9.3.1 Resolved issues . 70

9.4 3.5.0 (7 March 2018) . 70
9.4.1 New features . 70
9.4.2 Resolved issues . 70
9.4.3 Breaks in compatibility . 70

9.5 3.4.12 (5 February 2018) . 70
9.5.1 Resolved issues . 70

9.6 3.4.11 (5 February 2018) . 71
9.6.1 Resolved issues . 71

9.7 3.4.10 (2 February 2018) . 71
9.7.1 Resolved issues . 71

9.8 3.4.9 (1 February 2018) . 71
9.8.1 New features . 71
9.8.2 Resolved issues . 71

9.9 3.4.8 (27 January 2018) . 71
9.9.1 New features . 71
9.9.2 Resolved issues . 71

9.10 3.4.7 (26 August 2017) . 72
9.10.1 New features . 72
9.10.2 Resolved issues . 72

9.11 3.4.6 (18 May 2017) . 72
9.11.1 Resolved issues . 72

ii

9.12 3.4.5 (6 February 2017) . 72
9.12.1 Resolved issues . 72

9.13 3.4.4 (1 February 2017) . 72
9.13.1 Resolved issues . 72

9.14 3.4.3 (17 October 2016) . 72
9.14.1 Resolved issues . 72

9.15 3.4.2 (8 March 2016) . 73
9.15.1 Resolved issues . 73

9.16 3.4.1 (21 February 2016) . 73
9.16.1 New features . 73

9.17 3.4 (7 February 2016) . 73
9.17.1 New features . 73
9.17.2 Resolved issues . 74
9.17.3 Breaks in compatibility . 74

9.18 3.3.1 (1 November 2015) . 74
9.18.1 New features . 74
9.18.2 Resolved issues . 74
9.18.3 Breaks in compatibility . 74

9.19 3.3 (29 October 2015) . 75
9.19.1 New features . 75
9.19.2 Resolved issues . 75
9.19.3 Breaks in compatibility . 75

9.20 3.2.1 (9 September 2015) . 75
9.20.1 New features . 75

9.21 3.2 (6 September 2015) . 75
9.21.1 New features . 75
9.21.2 Resolved issues . 75
9.21.3 Breaks in compatibility . 76

9.22 3.1 (15 March 2015) . 76
9.22.1 New features . 76
9.22.2 Resolved issues . 76
9.22.3 Breaks in compatibility . 76

9.23 3.0 (24 June 2014) . 76
9.23.1 New features . 76
9.23.2 Resolved issues . 77
9.23.3 Breaks in compatibility . 77
9.23.4 Other changes . 78

10 License 79
10.1 Public domain . 79
10.2 BSD license . 79
10.3 OCB license . 80
10.4 Apache 2.0 license (Wycheproof) . 80

Python Module Index 85

iii

iv

PyCryptodome Documentation, Release 3.6.1

Contents 1

https://travis-ci.org/Legrandin/pycryptodome
https://ci.appveyor.com/project/Legrandin/pycryptodome

PyCryptodome Documentation, Release 3.6.1

2 Contents

CHAPTER 1

PyCryptodome

PyCryptodome is a self-contained Python package of low-level cryptographic primitives.

It supports Python 2.6 or newer, all Python 3 versions and PyPy.

The installation procedure depends on the package you want the library to be in. PyCryptodome can be used as:

1. an almost drop-in replacement for the old PyCrypto library. You install it with:

pip install pycryptodome

In this case, all modules are installed under the Crypto package.

One must avoid having both PyCrypto and PyCryptodome installed at the same time, as they will interfere with
each other.

This option is therefore recommended only when you are sure that the whole application is deployed in a
virtualenv.

2. a library independent of the old PyCrypto. You install it with:

pip install pycryptodomex

In this case, all modules are installed under the Cryptodome package. PyCrypto and PyCryptodome can
coexist.

For faster public key operations in Unix, you should install GMP in your system.

PyCryptodome is a fork of PyCrypto. It brings the following enhancements with respect to the last official version of
PyCrypto (2.6.1):

• Authenticated encryption modes (GCM, CCM, EAX, SIV, OCB)

• Accelerated AES on Intel platforms via AES-NI

• First class support for PyPy

• Elliptic curves cryptography (NIST P-256 curve only)

3

https://gmplib.org

PyCryptodome Documentation, Release 3.6.1

• Better and more compact API (nonce and iv attributes for ciphers, automatic generation of random nonces and
IVs, simplified CTR cipher mode, and more)

• SHA-3 (including SHAKE XOFs), SHA-512/t and BLAKE2 hash algorithms

• Salsa20 and ChaCha20 stream ciphers

• scrypt and HKDF

• Deterministic (EC)DSA

• Password-protected PKCS#8 key containers

• Shamir’s Secret Sharing scheme

• Random numbers get sourced directly from the OS (and not from a CSPRNG in userspace)

• Simplified install process, including better support for Windows

• Cleaner RSA and DSA key generation (largely based on FIPS 186-4)

• Major clean ups and simplification of the code base

PyCryptodome is not a wrapper to a separate C library like OpenSSL. To the largest possible extent, algorithms are
implemented in pure Python. Only the pieces that are extremely critical to performance (e.g. block ciphers) are
implemented as C extensions.

For more information, see the homepage.

All the code can be downloaded from GitHub.

4 Chapter 1. PyCryptodome

http://www.pycryptodome.org
https://github.com/Legrandin/pycryptodome

CHAPTER 2

Features

This page lists the low-level primitives that PyCryptodome provides.

You are expected to have a solid understanding of cryptography and security engineering to successfully use them.

You must also be able to recognize that some primitives are obsolete (e.g. TDES) or even unsecure (RC4). They are
provided only to enable backward compatibility where required by the applications.

A list of useful resources in that area can be found on Matthew Green’s blog.

• Symmetric ciphers:

– AES

– Single and Triple DES

– CAST-128

– RC2

• Traditional modes of operations for symmetric ciphers:

– ECB

– CBC

– CFB

– OFB

– CTR

– OpenPGP (a variant of CFB, RFC4880)

• AEAD modes of operations for symmetric ciphers:

– CCM (AES only)

– EAX

– GCM (AES only)

– SIV (AES only)

5

http://blog.cryptographyengineering.com/p/useful-cryptography-resources.html

PyCryptodome Documentation, Release 3.6.1

– OCB (AES only)

• Stream ciphers:

– Salsa20

– ChaCha20

– RC4

• Cryptographic hashes:

– SHA-1

– SHA-2 hashes (224, 256, 384, 512, 512/224, 512/256)

– SHA-3 hashes (224, 256, 384, 512) and XOFs (SHAKE128, SHAKE256)

– Keccak (original submission to SHA-3)

– BLAKE2b and BLAKE2s

– RIPE-MD160

– MD5

• Message Authentication Codes (MAC):

– HMAC

– CMAC

• Asymmetric key generation:

– RSA

– DSA

– ECC (NIST P-256 curve only)

– ElGamal

• Export and import format for asymmetric keys:

– PEM (clear and encrypted)

– PKCS#8 (clear and encrypted)

– ASN.1 DER

• Asymmetric ciphers:

– PKCS#1 (RSA)

* RSAES-PKCS1-v1_5

* RSAES-OAEP

• Asymmetric digital signatures:

– PKCS#1 (RSA)

* RSASSA-PKCS1-v1_5

* RSASSA-PSS

– (EC)DSA

* Nonce-based (FIPS 186-3)

* Deterministic (RFC6979)

6 Chapter 2. Features

PyCryptodome Documentation, Release 3.6.1

• Key derivation:

– PBKDF1

– PBKDF2

– scrypt

– HKDF

• Other cryptographic protocols:

– Shamir Secret Sharing

– Padding

* PKCS#7

* ISO-7816

* X.923

7

PyCryptodome Documentation, Release 3.6.1

8 Chapter 2. Features

CHAPTER 3

Installation

The installation procedure depends on the package you want the library to be in. PyCryptodome can be used as:

1. an almost drop-in replacement for the old PyCrypto library. You install it with:

pip install pycryptodome

In this case, all modules are installed under the Crypto package. You can test everything is right with:

python -m Crypto.SelfTest

One must avoid having both PyCrypto and PyCryptodome installed at the same time, as they will interfere with
each other.

This option is therefore recommended only when you are sure that the whole application is deployed in a
virtualenv.

2. a library independent of the old PyCrypto. You install it with:

pip install pycryptodomex

You can test everything is right with:

python -m Cryptodome.SelfTest

In this case, all modules are installed under the Cryptodome package. PyCrypto and PyCryptodome can
coexist.

The procedures below go a bit more in detail, by explaining how to setup the environment for compiling the C exten-
sions for each OS, and how to install the GMP library.

3.1 Compiling in Linux Ubuntu

9

PyCryptodome Documentation, Release 3.6.1

Note: If you want to install under the Crypto package, replace below pycryptodomex with pycryptodome.

For Python 2.x:

$ sudo apt-get install build-essential libgmp3-dev python-dev
$ pip install pycryptodomex
$ python -m Cryptodome.SelfTest

For Python 3.x:

$ sudo apt-get install build-essential libgmp3-dev python3-dev
$ pip install pycryptodomex
$ python3 -m Cryptodome.SelfTest

For PyPy:

$ sudo apt-get install build-essential libgmp3-dev pypy-dev
$ pip install pycryptodomex
$ pypy -m Cryptodome.SelfTest

3.2 Compiling in Linux Fedora

Note: If you want to install under the Crypto package, replace below pycryptodomex with pycryptodome.

For Python 2.x:

$ sudo yum install gcc gmp python-devel
$ pip install pycryptodomex
$ python -m Cryptodome.SelfTest

For Python 3.x:

$ sudo yum install gcc gmp python3-devel
$ pip install pycryptodomex
$ python3 -m Cryptodome.SelfTest

For PyPy:

$ sudo yum install gcc gmp pypy-devel
$ pip install pycryptodomex
$ pypy -m Cryptodome.SelfTest

3.3 Windows (from sources, Python 2.x, Python <=3.2)

Note: If you want to install under the Crypto package, replace below pycryptodomex with pycryptodome.

10 Chapter 3. Installation

PyCryptodome Documentation, Release 3.6.1

Windows does not come with a C compiler like most Unix systems. The simplest way to compile the Pycryptodome
extensions from source code is to install the minimum set of Visual Studio components freely made available by
Microsoft.

1. Run Python from the command line and note down its version and whether it is a 32 bit or a 64 bit application.

For instance, if you see:

Python 2.7.2+ ... [MSC v.1500 32 bit (Intel)] on win32

you clearly have Python 2.7 and it is a 32 bit application.

2. [Only once] Install Virtual Clone Drive.

3. [Only once] Download the ISO image of the MS SDK for Windows 7 and . NET Framework 3.5 SP1. It
contains the Visual C++ 2008 compiler.

There are three ISO images available: you will need GRMSDK_EN_DVD.iso if your Windows OS is 32 bits or
GRMSDKX_EN_DVD.iso if 64 bits.

Mount the ISO with Virtual Clone Drive and install the C/C++ compilers and the redistributable only.

4. If your Python is a 64 bit application, open a command prompt and perform the following steps:

> cd "C:\Program Files\Microsoft SDKs\Windows\v7.0"
> cmd /V:ON /K Bin\SetEnv.Cmd /x64 /release
> set DISTUTILS_USE_SDK=1

Replace /x64 with /x86 if your Python is a 32 bit application.

5. Compile and install PyCryptodome:

> pip install pycryptodomex --no-use-wheel

6. To make sure everything work fine, run the test suite:

> python -m Cryptodome.SelfTest

3.4 Windows (from sources, Python 3.3 and 3.4)

Note: If you want to install under the Crypto package, replace below pycryptodomex with pycryptodome.

Windows does not come with a C compiler like most Unix systems. The simplest way to compile the Pycryptodome
extensions from source code is to install the minimum set of Visual Studio components freely made available by
Microsoft.

1. Run Python from the command line and note down its version and whether it is a 32 bit or a 64 bit application.

For instance, if you see:

Python 2.7.2+ ... [MSC v.1500 32 bit (Intel)] on win32

you clearly have Python 2.7 and it is a 32 bit application.

2. [Only once] Install Virtual Clone Drive.

3.4. Windows (from sources, Python 3.3 and 3.4) 11

https://www.redfox.bz/virtual-clonedrive.html
http://www.microsoft.com/en-us/download/details.aspx?id=18950
https://www.redfox.bz/virtual-clonedrive.html

PyCryptodome Documentation, Release 3.6.1

3. [Only once] Download the ISO image of the MS SDK for Windows 7 and . NET Framework 4. It contains the
Visual C++ 2010 compiler.

There are three ISO images available: you will need GRMSDK_EN_DVD.iso if your Windows OS is 32 bits or
GRMSDKX_EN_DVD.iso if 64 bits.

Mount the ISO with Virtual Clone Drive and install the C/C++ compilers and the redistributable only.

4. If your Python is a 64 bit application, open a command prompt and perform the following steps:

> cd "C:\Program Files\Microsoft SDKs\Windows\v7.1"
> cmd /V:ON /K Bin\SetEnv.Cmd /x64 /release
> set DISTUTILS_USE_SDK=1

Replace /x64 with /x86 if your Python is a 32 bit application.

5. Compile and install PyCryptodome:

> pip install pycryptodomex --no-use-wheel

6. To make sure everything work fine, run the test suite:

> python -m Cryptodome.SelfTest

3.5 Windows (from sources, Python 3.5 and newer)

Note: If you want to install under the Crypto package, replace below pycryptodomex with pycryptodome.

Windows does not come with a C compiler like most Unix systems. The simplest way to compile the PyCryptodome
extensions from source code is to install the minimum set of Visual Studio components freely made available by
Microsoft.

1. [Once only] Download MS Visual Studio 2015 (Community Edition) and install the C/C++ compilers and the
redistributable only.

2. Compile and install PyCryptodome:

> pip install pycryptodomex --no-use-wheel

3. To make sure everything work fine, run the test suite:

> python -m Cryptodome.SelfTest

3.6 Documentation

Project documentation is written in reStructuredText and it is stored under Doc/src. To publish it as HTML files,
you need to install sphinx and use:

> make -C Doc/ html

It will then be available under Doc/_build/html/.

12 Chapter 3. Installation

https://www.microsoft.com/en-us/download/details.aspx?id=8442
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
http://www.sphinx-doc.org/en/stable/

PyCryptodome Documentation, Release 3.6.1

3.7 PGP verification

All source packages and wheels on PyPI are cryptographically signed. They can be verified with the following PGP
key:

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFTXjPgBEADc3j7vnma9MXRshBPPXXenVpthQD6lrF/3XaBT2RptSf/viOD+
tz85du5XVp+r0SYYGeMNJCQ9NsztxblN/lnKgkfWRmSrB+V6QGS+e3bR5d9OIxzN
7haPxBnyRj//hCT/kKis6fa7N9wtwKBBjbaSX+9vpt7Rrt203sKfcChA4iR3EG89
TNQoc/kGGmwk/gyjfU38726v0NOhMKJp2154iQQVZ76hTDk6GkOYHTcPxdkAj4jS
Dd74M9sOtoOlyDLHOLcWNnlWGgZjtz0z0qSyFXRSuOfggTxrepWQgKWXXzgVB4Jo
0bhmXPAV8vkX5BoG6zGkYb47NGGvknax6jCvFYTCp1sOmVtf5UTVKPplFm077tQg
0KZNAvEQrdWRIiQ1cCGCoF2Alex3VmVdefHOhNmyY7xAlzpP0c8z1DsgZgMnytNn
GPusWeqQVijRxenl+lyhbkb9ZLDq7mOkCRXSze9J2+5aLTJbJu3+Wx6BEyNIHP/f
K3E77nXvC0oKaYTbTwEQSBAggAXP+7oQaA0ea2SLO176xJdNfC5lkQEtMMSZI4gN
iSqjUxXW2N5qEHHex1atmTtk4W9tQEw030a0UCxzDJMhD0aWFKq7wOxoCQ1q821R
vxBH4cfGWdL/1FUcuCMSUlc6fhTM9pvMXgjdEXcoiLSTdaHuVLuqmF/E0wARAQAB
tB9MZWdyYW5kaW4gPGhlbGRlcmlqc0BnbWFpbC5jb20+iQI4BBMBAgAiBQJU14z4
AhsDBgsJCAcDAgYVCAIJCgsEFgIDAQIeAQIXgAAKCRDabO+N4RaZEn7IEACpApha
vRwPB+Dv87aEyVmjZ96Nb3mxHdeP2uSmUxAODzoB5oJJ1QL6HRxEVlU8idjdf73H
DX39ZC7izD+oYIve9sNwTbKqJCZaTxlTDdgSF1N57eJOlELAy+SqpHtaMJPk7SfJ
l/iYoUYxByPLZU1wDwZEDNzt9RCGy3bd/vF/AxWjdUJJPh3E4j5hswvIGSf8/Tp3
MDROU1BaNBOd0CLvBHok8/xavwO6Dk/fE4hJhd5uZcEPtd1GJcPq51z2yr7PGUcb
oERsKZyG8cgfd7j8qoTd6jMIW6fBVHdxiMxW6/Z45X/vVciQSzzEl/yjPUW42kyr
Ib6M16YmnDzp8bl4NNFvvR9uWvOdUkep2Bi8s8kBMJ7G9rHHJcdVy/tP1ECS9Bse
hN4v5oJJ4v5mM/MiWRGKykZULWklonpiq6CewYkmXQDMRnjGXhjCWrB6LuSIkIXd
gKvDNpJ8yEhAfmpvA4I3laMoof/tSZ7ZuyLSZGLKl6hoNIB13HCn4dnjNBeaXCWX
pThgeOWxV6u1fhz4CeC1Hc8WOYr8S7G8P10Ji6owOcj/a1QuCW8XDB2omCTXlhFj
zpC9dX8HgmUVnbPNiMjphihbKXoOcunRx4ZvqIa8mnTbI4tHtR0K0tI4MmbpcVOZ
8IFJ0nZJXuZiL57ijLREisPYmHfBHAgmh1j/W7kCDQRU14z4ARAA3QATRgvOSYFh
nJOnIz6PO3G9kXWjJ8wvp3yE1/PwwTc3NbVUSNCW14xgM2Ryhn9NVh8iEGtPGmUP
4vu7rvuLC2rBs1joBTyqf0mDghlZrb5ZjXv5LcG9SA6FdAXRU6T+b1G2ychKkhEh
d/ulLw/TKLds9zHhE+hkAagLQ5jqjcQN0iX5EYaOukiPUGmnd9fOEGi9YMYtRdrH
+3bZxUpsRStLBWJ6auY7Bla8NJOhaWpr5p/ls+mnDWoqf+tXCCps1Da/pfHKYDFc
2VVdyM/VfNny9eaczYpnj5hvIAACWChgGDBwxPh2DGdUfiQi/QqrK96+F7ulqz6V
2exX4CL0cPv5fUpQqSU/0R5WApM9bl2+wljFhoCXlydU9HNn+0GatGzEoo3yrV/m
PXv7d6NdZxyOqgxu/ai/z++F2pWUXSBxZN3Gv28boFKQhmtthTcFudNUtQOchhn8
Pf/ipVISqrsZorTx9Qx4fPScEWjwbh84Uz20bx0sQs1oYcek2YG5RhEdzqJ6W78R
S/dbzlNYMXGdkxB6C63m8oiGvw0hdN/iGVqpNAoldFmjnFqSgKpyPwfLmmdstJ6f
xFZdGPnKexCpHbKr9fg50jZRenIGai79qPIiEtCZHIdpeemSrc7TKRPV3H2aMNfG
L5HTqcyaM2+QrMtHPMoOFzcjkigLimMAEQEAAYkCHwQYAQIACQUCVNeM+AIbDAAK
CRDabO+N4RaZEo7lD/45J6z2wbL8aIudGEL0aY3hfmW3qrUyoHgaw35KsOY9vZwb
cZuJe0RlYptOreH/NrbR5SXODfhd2sxYyyvXBOuZh9i7OOBsrAd5UE01GCvToPwh
7IpMV3GSSAB4P8XyJh20tZqiZOYKhmbf29gUDzqAI6GzUa0U8xidUKpW2zqYGZjp
wk3RI1fS7tyi/0N8B9tIZF48kbvpFDAjF8w7NSCrgRquAL7zJZIG5o5zXJM/ffF3
67Dnz278MbifdM/HJ+Tj0R0Uvvki9Z61nT653SoUgvILQyC72XI+x0+3GQwsE38a
5aJNZ1NBD3/v+gERQxRfhM5iLFLXK0Xe4K2XFM1g0yN4L4bQPbhSCq88g9Dhmygk
XPbBsrK0NKPVnyGyUXM0VpgRbot11hxx02jC3HxS1nlLF+oQdkKFzJAMOU7UbpX/
oO+286J1FmpG+fihIbvp1Quq48immtnzTeLZbYCsG4mrM+ySYd0Er0G8TBdAOTiN
3zMbGX0QOO2fOsJ1d980cVjHn5CbAo8C0A/4/R2cXAfpacbvTiNq5BVk9NKa2dNb
kmnTStP2qILWmm5ASXlWhOjWNmptvsUcK+8T+uQboLioEv19Ob4j5Irs/OpOuP0K
v4woCi9+03HMS42qGSe/igClFO3+gUMZg9PJnTJhuaTbytXhUBgBRUPsS+lQAQ==
=DpoI
-----END PGP PUBLIC KEY BLOCK-----

3.7. PGP verification 13

PyCryptodome Documentation, Release 3.6.1

14 Chapter 3. Installation

CHAPTER 4

Compatibility with PyCrypto

PyCryptodome exposes almost the same API as the old PyCrypto so that most applications will run unmodified.
However, a very few breaks in compatibility had to be introduced for those parts of the API that represented a security
hazard or that were too hard to maintain.

Specifically, for public key cryptography:

• The following methods from public key objects (RSA, DSA, ElGamal) have been removed:

– sign()

– verify()

– encrypt()

– decrypt()

– blind()

– unblind()

Applications should be updated to use instead:

– Crypto.Cipher.PKCS1_OAEP for encrypting using RSA.

– Crypto.Signature.pkcs1_15 or Crypto.Signature.pss for signing using RSA.

– Crypto.Signature.DSS for signing using DSA.

• Method: generate() for public key modules does not accept the progress_func parameter anymore.

• Ambiguous method size from RSA, DSA and ElGamal key objects have bene removed. Instead, use methods
size_in_bytes() and size_in_bits() and check the documentation.

• The 3 public key object types (RSA, DSA, ElGamal) are now unpickable. You must use the export_key()
method of each key object and select a good output format: for private keys that means a good password-based
encryption scheme.

• Removed attribute Crypto.PublicKey.RSA.algorithmIdentifier.

• Removed Crypto.PublicKey.RSA.RSAImplementation (which should have been private in the first
place). Same for Crypto.PublicKey.DSA.DSAImplementation.

15

https://www.dlitz.net/software/pycrypto

PyCryptodome Documentation, Release 3.6.1

For symmetric key cryptography:

• Symmetric ciphers do not have ECB as default mode anymore. ECB is not semantically secure and it exposes
correlation across blocks. An expression like AES.new(key) will now fail. If ECB is the desired mode, one
has to explicitly use AES.new(key, AES.MODE_ECB).

• Crypto.Cipher.DES3 does not allow keys that degenerate to Single DES.

• Parameter segment_size cannot be 0 for the CFB mode.

• Parameters disabled_shortcut and overflow cannot be passed anymore to Crypto.Util.
Counter.new . Parameter allow_wraparound is ignored (counter block wraparound will always be
checked).

• The counter parameter of a CTR mode cipher must be generated via Crypto.Util.Counter. It cannot
be a generic callable anymore.

• Keys for Crypto.Cipher.ARC2, Crypto.Cipher.ARC4 and Crypto.Cipher.Blowfish must be
at least 40 bits long (still very weak).

The following packages, modules and functions have been removed:

• Crypto.Random.OSRNG, Crypto.Util.winrandom and Crypto.Random.randpool. You should
use Crypto.Random only.

• Crypto.Cipher.XOR. If you just want to XOR data, use Crypto.Util.strxor.

• Crypto.Hash.new. Use Crypto.Hash.<algorithm>.new() instead.

• Crypto.Protocol.AllOrNothing

• Crypto.Protocol.Chaffing

• Crypto.Util.number.getRandomNumber

• Crypto.pct_warnings

Others:

• Support for any Python version older than 2.6 is dropped.

16 Chapter 4. Compatibility with PyCrypto

CHAPTER 5

API documentation

5.1 Crypto.Cipher package

5.1.1 Introduction

The Crypto.Cipher package contains algorithms for protecting the confidentiality of data.

There are three types of encryption algorithms:

1. Symmetric ciphers: all parties use the same key, for both decrypting and encrypting data. Symmetric ciphers
are typically very fast and can process very large amount of data.

2. Asymmetric ciphers: senders and receivers use different keys. Senders encrypt with public keys (non-secret)
whereas receivers decrypt with private keys (secret). Asymmetric ciphers are typically very slow and can process
only very small payloads. Example: oaep.

3. Hybrid ciphers: the two types of ciphers above can be combined in a construction that inherits the benefits of
both. An asymmetric cipher is used to protect a short-lived symmetric key, and a symmetric cipher (under that
key) encrypts the actual message.

5.1.2 API principles

The base API of a cipher is fairly simple:

• You instantiate a cipher object by calling the new() function from the relevant cipher module (e.g. Crypto.
Cipher.AES.new()). The first parameter is always the cryptographic key; its length depends on the partic-
ular cipher. You can (and sometimes must) pass additional cipher- or mode-specific parameters to new() (such
as a nonce or a mode of operation).

• For encrypting, you call the encrypt() method of the cipher object with the plaintext. The method returns
the piece of ciphertext. For most algorithms, you may call encrypt() multiple times (i.e. once for each piece
of plaintext).

17

PyCryptodome Documentation, Release 3.6.1

Fig. 1: Generic state diagram for a cipher object

• For decrypting, you call the decrypt() method of the cipher object with the ciphertext. The method returns
the piece of plaintext. For most algorithms, you may call decrypt() multiple times (i.e. once for each piece
of ciphertext).

Note: Plaintexts and ciphertexts (input/output) are all byte strings or byte arrays. An error will occur with Python 3
strings or Python 2 Unicode strings.

Often, the sender has to deliver to the receiver other data in addition to ciphertext alone (e.g. initialization vectors or
nonces, MAC tags, etc).

This is a basic example:

>>> from Crypto.Cipher import Salsa20
>>>
>>> key = b'0123456789012345'
>>> cipher = Salsa20.new(key)
>>> ciphertext = cipher.encrypt(b'The secret I want to send.')
>>> ciphertext += cipher.encrypt(b'The second part of the secret.')
>>> print cipher.nonce # A byte string you must send to the receiver too

5.1.3 Symmetric ciphers

There are two types of symmetric ciphers:

• Stream ciphers: the most natural kind of ciphers; they encrypt any piece of data by preserving its length: see
chacha20, salsa20.

• Block ciphers: ciphers that can only operate on a fixed amount of data. The most important block cipher is aes,
which has a block size of 16 bytes.

A block cipher is in general useful only in combination with a mode of operation . There are classic modes like
CTR or authenticated modes like GCM.

Classic modes of operation for symmetric block ciphers

Block ciphers are often only used together with a mode of operation.

18 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

When you create a block cipher object with the new() function, the second argument (after the cryptographic key) is
a constant that sets the desired mode of operation. For instance:

>>> from Crypto.Cipher import AES
>>>
>>> cipher = AES.new(key, AES.MODE_CBC)

Constants are defined at the module level for each cipher algorithm, and their names start with MODE_ (for instance
Crypto.Cipher.AES.MODE_CBC).

This is the list of all classic modes (more modern modes are described in another section). Mind the not all modes are
available for all block ciphers.

ECB mode

Constant: Crypto.Cipher.<cipher>.MODE_ECB.

Electronic CodeBook. A weak mode of operation whereby the cipher is applied in isolation to each of the blocks that
compose the overall message.

This mode should not be used because it is not semantically secure and it exposes correlation between blocks.

encrypt() and decrypt() methods only accept data having length multiple of the block size.

CBC mode

Constant: Crypto.Cipher.<cipher>.MODE_CBC.

Ciphertext Block Chaining, defined in NIST SP 800-38A, section 6.2. It is a mode of operation where each plaintext
block is XOR-ed with the last produced ciphertext block prior to encryption.

The new() function expects the following extra parameters:

• iv (byte string): an unpredictable Initialization Vector of length equal to the block size (e.g. 16 bytes for
Crypto.Cipher.AES). If not present, a random IV will be created.

encrypt() and decrypt() methods only accept data with length multiple of the block size. You might need to
use Crypto.Util.Padding.

The cipher object has a read-only attribute iv.

CFB mode

Constant: Crypto.Cipher.<cipher>.MODE_CFB.

Cipher FeedBack, defined in NIST SP 800-38A, section 6.3. It is a mode of operation which turns the block cipher
into a stream cipher, with the plaintext getting XOR-ed with a keystream to obtain the ciphertext. The keystream is the
last produced cipertext encrypted with the block cipher.

The new() function expects the following extra parameters:

• iv (byte string): an non-repeatable Initialization Vector of length equal to the block size (e.g. 16 bytes for
Crypto.Cipher.AES). If not present, a random IV will be created.

• segment_size (integer): the number of bits the plaintext and the ciphertext are segmented in (default if
not specified: 8).

The cipher object has a read-only attribute iv.

5.1. Crypto.Cipher package 19

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29
https://en.wikipedia.org/wiki/Semantic_security
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_.28CBC.29
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.28ECB.29
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

PyCryptodome Documentation, Release 3.6.1

OFB mode

Constant: Crypto.Cipher.<cipher>.MODE_OFB.

Output FeedBack, defined in NIST SP 800-38A, section 6.4. It is another mode that leads to a stream cipher. The
keystream is obtained by recursively encrypting the IV.

The new() function expects the following extra parameters:

• iv (byte string): an non-repeatable Initialization Vector of length equal to the block size (e.g. 16 bytes for
Crypto.Cipher.AES). If not present, a random IV will be created.

The cipher object has a read-only attribute iv.

CTR mode

Constant: Crypto.Cipher.<cipher>.MODE_CTR.

CounTeR mode, defined in NIST SP 800-38A, section 6.5 and Appendix B. It is another mode that leads to a stream
cipher. The keystream is obtained by encrypting a block counter, which is the concatenation of a nonce (fixed during
the computation) to a counter field (ever increasing).

The new() function expects the following extra parameters:

• nonce (byte string): a mandatory non-repeatable value, of length between 0 and block length minus 1.

• initial_value (integer): the initial value for the counter field (default if not specified: 0).

The cipher object has a read-only attribute nonce.

OpenPGP mode

Constant: Crypto.Cipher.<cipher>.MODE_OPENPGP.

OpenPGP (defined in RFC4880). A variant of CFB, with two differences:

1. The first invokation to the encrypt() method returns the encrypted IV concatenated to the first chunk on
ciphertext (as opposed to the ciphertext only). The encrypted IV is as long as the block size plus 2 more bytes.

2. When the cipher object is intended for decryption, the parameter iv to new() is the encrypted IV (and not the
IV, which is still the case for encryption).

Like for CTR, any cipher object has a read-only attribute iv.

Modern modes of operation for symmetric block ciphers

Classic modes of operation such as CBC only provide guarantees over the confidentiality of the message but not over
its integrity. In other words, they don’t allow the receiver to establish if the ciphertext was modified in transit or if it
really originates from a certain source.

For that reason, classic modes of operation have been often paired with a MAC primitive (such as Crypto.Hash.
HMAC), but the combination is not always straightforward, efficient or secure.

Recently, new modes of operations (AEAD, for Authenticated Encryption with Associated Data) have been designed
to combine encryption and authentication into a single, efficient primitive. Optionally, some part of the message can
also be left in the clear (non-confidential associated data, such as headers), while the whole message remains fully
authenticated.

In addition to the ciphertext and a nonce / IV, AEAD modes require the additional delivery of a MAC tag.

20 Chapter 5. API documentation

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Output_Feedback_.28OFB.29
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
https://tools.ietf.org/html/rfc4880
https://en.wikipedia.org/wiki/Authenticated_encryption

PyCryptodome Documentation, Release 3.6.1

The API of an AEAD cipher object is richer, as it include methods normally found in a MAC object:

• The update() method consumes data (if any) which must be authenticated but not encrypted. Note that any
data passed to encrypt() or decrypt() is automatically authenticated.

• The digest()method creates an authentication tag (MAC tag) at the end of the encryption process (the variant
hexdigest() exists to output the tag as a hexadecimal string).

• The verify()method checks if the provided authentication tag (MAC tag) is valid at the end of the decryption
process (the variant hexverify() exists in case the MAC tag is a hexadecimal string).

• The encrypt_and_digest() method encrypts and creates a MAC tag in one go.

• The decrypt_and_verify() method decrypts and checks a MAC tag in one go.

The state machine for a cipher object becomes:

Fig. 2: Generic state diagram for a AEAD cipher mode

CCM mode

Constant: Crypto.Cipher.<cipher>.MODE_CCM.

Counter with CBC-MAC, defined in RFC3610 or NIST SP 800-38C. It only works with ciphers having block size 128
bits (like AES).

The new() function expects the following extra parameters:

• nonce (byte string): a non-repeatable value, of length between 7 and 13 bytes. The longer the nonce, the
smaller the allowed message size (with a nonce of 13 bytes, the message cannot exceed 64KBi). If not present,
a random 11 bytes long nonce will be created (the maximum message size is 8GBi).

• mac_len (integer): the desired length of the MAC tag (default if not present: 16 bytes).

5.1. Crypto.Cipher package 21

https://en.wikipedia.org/wiki/CCM_mode
https://tools.ietf.org/html/rfc3610
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C.pdf

PyCryptodome Documentation, Release 3.6.1

• msg_len (integer): pre-declaration of the length of the message to encipher. If not specified, encrypt() and
decrypt() can only be called once.

• assoc_len (integer): pre-declaration of the length of the associated data. If not specified, some extra buffering
will take place internally.

The cipher object has a read-only attribute nonce.

EAX mode

Constant: Crypto.Cipher.<cipher>.MODE_EAX.

An AEAD mode designed for NIST by Bellare, Rogaway, and Wagner in 2003.

The new() function expects the following extra parameters:

• nonce (byte string): a non-repeatable value, of arbitrary length. If not present, a random nonce of the recom-
mended length (16 bytes) will be created.

• mac_len (integer): the desired length of the MAC tag (default if not present: 16 bytes).

The cipher object has a read-only attribute nonce.

GCM mode

Constant: Crypto.Cipher.<cipher>.MODE_GCM.

Galois/Counter Mode, defined in NIST SP 800-38D. It only works in combination with a 128 bits cipher like AES.

The new() function expects the following extra parameters:

• nonce (byte string): a non-repeatable value, of arbitrary length. If not present, a random nonce of the recom-
mended length (16 bytes) will be created.

• mac_len (integer): the desired length of the MAC tag (default if not present: 16 bytes).

The cipher object has a read-only attribute nonce.

SIV mode

Constant: Crypto.Cipher.<cipher>.MODE_SIV.

Synthetic Initialization Vector (SIV), defined in RFC5297. It only works with ciphers with a block size of 128 bits
(like AES).

Although less efficient than other modes, SIV is nonce misuse-resistant: accidental reuse of the nonce does not jeop-
ardize the security as it happens with CCM or GCM. As a matter of fact, operating without a nonce is not an error
per se: the cipher simply becomes deterministic. In other words, a message gets always encrypted into the same
ciphertext.

Example of deterministic encryption with SIV:

>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes

>>> key = get_random_bytes(32)
>>> header = b'Non sensitive information'
>>> plaintext = b'Secret message'

(continues on next page)

22 Chapter 5. API documentation

http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/eax/eax-spec.pdf
https://en.wikipedia.org/wiki/Galois/Counter_Mode
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://tools.ietf.org/html/rfc5297

PyCryptodome Documentation, Release 3.6.1

(continued from previous page)

>>>
>>> cipher = AES.new(key, AES.MODE_SIV)
>>> cipher.update(header)
>>> ciphertext, tag = cipher.encrypt_and_digest(plaintext)

Example of deterministic decryption with SIV:

>>> from Crypto.Cipher import AES

>>> # ... acquire key and receive header, ciphertext and tag
>>>
>>> cipher = AES.new(key, AES.MODE_SIV)
>>> cipher.update(header)
>>> try:
>>> plaintext = cipher.decrypt_and_verify(ciphertext, tag)
>>> except ValueError:
>>> print("Invalid message")

One side-effect is that encryption (or decryption) must take place in one go with the method
encrypt_and_digest() (or decrypt_and_verify()). You cannot use encrypt() or decrypt().
The state diagram is therefore:

Fig. 3: State diagram for the SIV cipher mode

The new() function accepts one optional parameter, in addition to key and mode:

• nonce (bytes, bytearray, memoryview): a non-repeatable value, of arbitrary length. If not present, the encryp-
tion becomes deterministic.

The length of the key passed to new() must be twice as required by the underlying block cipher (e.g. 32 bytes for
AES-128).

5.1. Crypto.Cipher package 23

PyCryptodome Documentation, Release 3.6.1

Each call to the method update() consumes an full piece of associated data. That is, the sequence:

>>> siv_cipher.update(b"builtin")
>>> siv_cipher.update(b"securely")

is not equivalent to:

>>> siv_cipher.update(b"built")
>>> siv_cipher.update(b"insecurely")

The cipher object has a read-only attribute nonce.

OCB mode

Constant: Crypto.Cipher.<cipher>.MODE_OCB.

Offset CodeBook mode, a cipher designed by Rogaway and specified in RFC7253 (more specifically, this module
implements the last variant, OCB3). It only works in combination with a 128 bits cipher like AES.

OCB is patented in USA but free licenses exist for software implementations meant for non-military purposes and
open source.

The new() function expects the following extra parameters:

• nonce (byte string): a non-repeatable value, of length between 1 and 15 bytes.. If not present, a random nonce
of the recommended length (15 bytes) will be created.

• mac_len (integer): the desired length of the MAC tag (default if not present: 16 bytes).

The cipher object has a read-only attribute nonce.

5.1.4 Legacy ciphers

A number of ciphers are implemented in this library purely for backward compatibility purposes. They are deprecated
or even fully broken and should not be used in new designs.

• des and des3 (block ciphers)

• arc2 (block cipher)

• arc4 (stream cipher)

• blowfish (block cipher)

• cast (block cipher)

• pkcs1_v1_5 (asymmetric cipher)

5.2 Crypto.Signature package

The Crypto.Signature package contains algorithms for performing digital signatures, used to guarantee integrity
and non-repudiation.

Digital signatures are based on public key cryptography: the party that signs a message holds the private key, the one
that verifies the signature holds the public key.

24 Chapter 5. API documentation

https://en.wikipedia.org/wiki/OCB_mode
http://www.rfc-editor.org/info/rfc7253
http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm

PyCryptodome Documentation, Release 3.6.1

5.2.1 Signing a message

1. You instatiate a new signer object using the new() method in the module of the desired algorithm. The first
parameter is always the key object (private key) obtained via the Crypto.PublicKey module.

2. You instatiate a cryptographic hash (see Crypto.Hash) and digest the message with it.

3. You call sign() on the hash object. The output is the signature of the message (a byte string).

5.2.2 Verifying a signature

1. You instatiate a new verifier object using the new() method in the module of the desired algorithm. The first
parameter is always the key object (public key) obtained via the Crypto.PublicKey module.

2. You instatiate a cryptographic hash (see Crypto.Hash) and digest the message with it.

3. You call verify() on the hash object and the incoming signature. If the message is not authentic, an
ValueError is raised.

5.2.3 Available mechanisms

• pkcs1_v1_5

• pkcs1_pss

• dsa

5.3 Crypto.Hash package

Cryptographic hash functions take arbitrary binary strings as input, and produce a random-like fixed-length output
(called digest or hash value).

It is practically infeasible to derive the original input data from the digest. In other words, the cryptographic hash
function is one-way (pre-image resistance).

Given the digest of one message, it is also practically infeasible to find another message (second pre-image) with the
same digest (weak collision resistance).

Finally, it is infeasible to find two arbitrary messages with the same digest (strong collision resistance).

Regardless of the hash algorithm, an n bits long digest is at most as secure as a symmetric encryption algorithm keyed
with n/2 bits (birthday attack).

Hash functions can be simply used as integrity checks. In combination with a public-key algorithm, you can implement
a digital signature.

5.3.1 API principles

Every time you want to hash a message, you have to create a new hash object with the new() function in the relevant
algorithm module (e.g. Crypto.Hash.SHA256.new()).

A first piece of message to hash can be passed to new() with the data parameter:

>> from Crypto.Hash import SHA256
>>
>> hash_object = SHA256.new(data=b'First')

5.3. Crypto.Hash package 25

https://en.wikipedia.org/wiki/Birthday_attack

PyCryptodome Documentation, Release 3.6.1

Fig. 4: Generic state diagram for a hash object

26 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

Note: You can only hash byte strings or byte arrays (no Python 2 Unicode strings or Python 3 strings).

Afterwards, the method update() can be invoked any number of times as necessary, with other pieces of message:

>>> hash_object.update(b'Second')
>>> hash_object.update(b'Third')

The two steps above are equivalent to:

>>> hash_object.update(b'SecondThird')

A the end, the digest can be retrieved with the methods digest() or hexdigest():

>>> print(hash_object.digest())
b'}\x96\xfd@\xb2$?O\xca\xc1a\x10\x15\x8c\x94\xe4\xb4\x085"\xd5
→˓"\xa8\xa4C\x9e+\x00\x859\xc7A'
>>> print(hash_object.hexdigest())
7d96fd40b2243f4fcac16110158c94e4b4083522d522a8a4439e2b008539c741

5.3.2 Attributes of hash objects

Every hash object has the following attributes:

Attribute Description
digest_size Size of the digest in bytes, that is, the output of the digest() method. It does not exist

for hash functions with variable digest output (such as Crypto.Hash.SHAKE128). This
is also a module attribute.

block_size The size of the message block in bytes, input to the compression function. Only appli-
cable for algorithms based on the Merkle-Damgard construction (e.g. Crypto.Hash.
SHA256). This is also a module attribute.

oid A string with the dotted representation of the ASN.1 OID assigned to the hash algorithm.

5.3.3 Modern hash algorithms

• SHA-2 family

– sha224

– sha256

– sha384

– sha512

• SHA-3 family

– sha3_224

– sha3_256

– sha3_384

– sha3_512

• BLAKE2

5.3. Crypto.Hash package 27

PyCryptodome Documentation, Release 3.6.1

– blake2s

– blake2b

5.3.4 Extensible-Output Functions (XOF)

• SHAKE (in the SHA-3 family)

– shake128

– shake256

5.3.5 Message Authentication Code (MAC) algorithms

• hmac

• cmac

5.3.6 Historich hash algorithms

The following algorithms should not be used in new designs:

• sha1

• md2

• md5

• ripemd160

• keccak

5.4 Crypto.PublicKey package

In a public key cryptography system, senders and receivers do not use the same key. Instead, the system defines a key
pair, with one of the keys being confidential (private) and the other not (public).

Algorithm Sender uses.. Receiver uses. . .
Encryption Public key Private key
Signature Private key Public key

Unlike keys meant for symmetric cipher algorithms (typically just random bit strings), keys for public key algorithms
have very specific properties. This module collects all methods to generate, validate, store and retrieve public keys.

5.4.1 API principles

Asymmetric keys are represented by Python objects. Each object can be either a private key or a public key (the
method has_private() can be used to distinguish them).

A key object can be created in four ways:

1. generate() at the module level (e.g. Crypto.PublicKey.RSA.generate()). The key is randomly
created each time.

28 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

2. import_key() at the module level (e.g. Crypto.PublicKey.RSA.import_key()). The key is
loaded from memory.

3. construct() at the module level (e.g. Crypto.PublicKey.RSA.construct()). The key will be
built from a set of sub-components.

4. publickey() at the object level (e.g. Crypto.PublicKey.RSA.RsaKey.publickey()). The key
will be the public key matching the given object.

A key object can be serialized via its export_key() method.

Keys objects can be compared via the usual operators == and != (note that the two halves of the same key, private
and public, are considered as two different keys).

5.4.2 Available key types

RSA

RSA is the most widespread and used public key algorithm. Its security is based on the difficulty of factoring large
integers. The algorithm has withstood attacks for more than 30 years, and it is therefore considered reasonably secure
for new designs.

The algorithm can be used for both confidentiality (encryption) and authentication (digital signature). It is worth
noting that signing and decryption are significantly slower than verification and encryption.

The cryptograhic strength is primarily linked to the length of the RSA modulus n. In 2017, a sufficient length is
deemed to be 2048 bits. For more information, see the most recent ECRYPT report.

Both RSA ciphertexts and RSA signatures are as large as the RSA modulus n (256 bytes if n is 2048 bit long).

The module Crypto.PublicKey.RSA provides facilities for generating new RSA keys, reconstructing them from
known components, exporting them, and importing them.

As an example, this is how you generate a new RSA key pair, save it in a file called mykey.pem, and then read it
back:

>>> from Crypto.PublicKey import RSA
>>>
>>> key = RSA.generate(2048)
>>> f = open('mykey.pem','w')
>>> f.write(key.export_key('PEM'))
>>> f.close()
...
>>> f = open('mykey.pem','r')
>>> key = RSA.import_key(f.read())

Crypto.PublicKey.RSA.generate(bits, randfunc=None, e=65537)
Create a new RSA key pair.

The algorithm closely follows NIST FIPS 186-4 in its sections B.3.1 and B.3.3. The modulus is the product of
two non-strong probable primes. Each prime passes a suitable number of Miller-Rabin tests with random bases
and a single Lucas test.

Parameters

• bits (integer) – Key length, or size (in bits) of the RSA modulus. It must be at least
1024, but 2048 is recommended. The FIPS standard only defines 1024, 2048 and 3072.

• randfunc (callable) – Function that returns random bytes. The default is Crypto.
Random.get_random_bytes().

5.4. Crypto.PublicKey package 29

http://en.wikipedia.org/wiki/RSA_%28algorithm%29
http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

PyCryptodome Documentation, Release 3.6.1

• e (integer) – Public RSA exponent. It must be an odd positive integer. It is typically a
small number with very few ones in its binary representation. The FIPS standard requires
the public exponent to be at least 65537 (the default).

Returns: an RSA key object (RsaKey , with private key).

Crypto.PublicKey.RSA.construct(rsa_components, consistency_check=True)
Construct an RSA key from a tuple of valid RSA components.

The modulus n must be the product of two primes. The public exponent e must be odd and larger than 1.

In case of a private key, the following equations must apply:

𝑝 * 𝑞 = 𝑛 (5.1)
𝑒 * 𝑑 ≡ 1(mod lcm[(𝑝− 1)(𝑞 − 1)])(5.2)
𝑝 * 𝑢 ≡ 1(mod 𝑞)(5.3)

Parameters

• rsa_components (tuple) – A tuple of integers, with at least 2 and no more than 6
items. The items come in the following order:

1. RSA modulus n.

2. Public exponent e.

3. Private exponent d. Only required if the key is private.

4. First factor of n (p). Optional, but the other factor q must also be present.

5. Second factor of n (q). Optional.

6. CRT coefficient q, that is 𝑝−1mod 𝑞. Optional.

• consistency_check (boolean) – If True, the library will verify that the provided
components fulfil the main RSA properties.

Raises ValueError – when the key being imported fails the most basic RSA validity checks.

Returns: An RSA key object (RsaKey).

Crypto.PublicKey.RSA.import_key(extern_key, passphrase=None)
Import an RSA key (public or private half), encoded in standard form.

Parameters

• extern_key (string or byte string) – The RSA key to import.

The following formats are supported for an RSA public key:

– X.509 certificate (binary or PEM format)

– X.509 subjectPublicKeyInfo DER SEQUENCE (binary or PEM encoding)

– PKCS#1 RSAPublicKey DER SEQUENCE (binary or PEM encoding)

– OpenSSH (textual public key only)

The following formats are supported for an RSA private key:

– PKCS#1 RSAPrivateKey DER SEQUENCE (binary or PEM encoding)

– PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo DER SEQUENCE
(binary or PEM encoding)

– OpenSSH (textual public key only)

30 Chapter 5. API documentation

http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc5208.txt

PyCryptodome Documentation, Release 3.6.1

For details about the PEM encoding, see RFC1421/RFC1423.

The private key may be encrypted by means of a certain pass phrase either at the PEM level
or at the PKCS#8 level.

• passphrase (string) – In case of an encrypted private key, this is the pass phrase from
which the decryption key is derived.

Returns: An RSA key object (RsaKey).

Raises ValueError/IndexError/TypeError – When the given key cannot be parsed (pos-
sibly because the pass phrase is wrong).

class Crypto.PublicKey.RSA.RsaKey(**kwargs)
Class defining an actual RSA key. Do not instantiate directly. Use generate(), construct() or
import_key() instead.

Variables

• n (integer) – RSA modulus

• e (integer) – RSA public exponent

• d (integer) – RSA private exponent

• p (integer) – First factor of the RSA modulus

• q (integer) – Second factor of the RSA modulus

• u – Chinese remainder component (𝑝−1mod 𝑞)

exportKey(format=’PEM’, passphrase=None, pkcs=1, protection=None, randfunc=None)
Export this RSA key.

Parameters

• format (string) – The format to use for wrapping the key:

– ’PEM’. (Default) Text encoding, done according to RFC1421/RFC1423.

– ’DER’. Binary encoding.

– ’OpenSSH’. Textual encoding, done according to OpenSSH specification. Only suitable
for public keys (not private keys).

• passphrase (string) – (For private keys only) The pass phrase used for protecting
the output.

• pkcs (integer) – (For private keys only) The ASN.1 structure to use for serializing the
key. Note that even in case of PEM encoding, there is an inner ASN.1 DER structure.

With pkcs=1 (default), the private key is encoded in a simple PKCS#1 structure
(RSAPrivateKey).

With pkcs=8, the private key is encoded in a PKCS#8 structure (PrivateKeyInfo).

Note: This parameter is ignored for a public key. For DER and PEM, an ASN.1 DER
SubjectPublicKeyInfo structure is always used.

• protection (string) – (For private keys only) The encryption scheme to use for
protecting the private key.

If None (default), the behavior depends on format:

5.4. Crypto.PublicKey package 31

http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc5208.txt

PyCryptodome Documentation, Release 3.6.1

– For ‘DER’, the PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC scheme is used. The
following operations are performed:

1. A 16 byte Triple DES key is derived from the passphrase using Crypto.
Protocol.KDF.PBKDF2() with 8 bytes salt, and 1 000 iterations of Crypto.
Hash.HMAC.

2. The private key is encrypted using CBC.

3. The encrypted key is encoded according to PKCS#8.

– For ‘PEM’, the obsolete PEM encryption scheme is used. It is based on MD5 for key
derivation, and Triple DES for encryption.

Specifying a value for protection is only meaningful for PKCS#8 (that is, pkcs=8)
and only if a pass phrase is present too.

The supported schemes for PKCS#8 are listed in the Crypto.IO.PKCS8 module (see
wrap_algo parameter).

• randfunc (callable) – A function that provides random bytes. Only used for PEM
encoding. The default is Crypto.Random.get_random_bytes().

Returns the encoded key

Return type byte string

Raises ValueError – when the format is unknown or when you try to encrypt a private key
with DER format and PKCS#1.

Warning: If you don’t provide a pass phrase, the private key will be exported in the clear!

export_key(format=’PEM’, passphrase=None, pkcs=1, protection=None, randfunc=None)
Export this RSA key.

Parameters

• format (string) – The format to use for wrapping the key:

– ’PEM’. (Default) Text encoding, done according to RFC1421/RFC1423.

– ’DER’. Binary encoding.

– ’OpenSSH’. Textual encoding, done according to OpenSSH specification. Only
suitable for public keys (not private keys).

• passphrase (string) – (For private keys only) The pass phrase used for protect-
ing the output.

• pkcs (integer) – (For private keys only) The ASN.1 structure to use for serializing
the key. Note that even in case of PEM encoding, there is an inner ASN.1 DER
structure.

With pkcs=1 (default), the private key is encoded in a simple PKCS#1 structure
(RSAPrivateKey).

With pkcs=8, the private key is encoded in a PKCS#8 structure
(PrivateKeyInfo).

Note: This parameter is ignored for a public key. For DER and PEM, an ASN.1
DER SubjectPublicKeyInfo structure is always used.

32 Chapter 5. API documentation

http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc3447.txt
http://www.ietf.org/rfc/rfc5208.txt

PyCryptodome Documentation, Release 3.6.1

• protection (string) – (For private keys only) The encryption scheme to use for
protecting the private key.

If None (default), the behavior depends on format:

– For ‘DER’, the PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC scheme is used.
The following operations are performed:

1. A 16 byte Triple DES key is derived from the passphrase using Crypto.
Protocol.KDF.PBKDF2() with 8 bytes salt, and 1 000 iterations of
Crypto.Hash.HMAC.

2. The private key is encrypted using CBC.

3. The encrypted key is encoded according to PKCS#8.

– For ‘PEM’, the obsolete PEM encryption scheme is used. It is based on MD5 for
key derivation, and Triple DES for encryption.

Specifying a value for protection is only meaningful for PKCS#8 (that is,
pkcs=8) and only if a pass phrase is present too.

The supported schemes for PKCS#8 are listed in the Crypto.IO.PKCS8 module
(see wrap_algo parameter).

• randfunc (callable) – A function that provides random bytes. Only used for
PEM encoding. The default is Crypto.Random.get_random_bytes().

Returns the encoded key

Return type byte string

Raises ValueError – when the format is unknown or when you try to encrypt a private key
with DER format and PKCS#1.

Warning: If you don’t provide a pass phrase, the private key will be exported in the clear!

has_private()
Whether this is an RSA private key

publickey()
A matching RSA public key.

Returns a new RsaKey object

size_in_bits()
Size of the RSA modulus in bits

size_in_bytes()
The minimal amount of bytes that can hold the RSA modulus

Crypto.PublicKey.RSA.oid = '1.2.840.113549.1.1.1'
Object ID for the RSA encryption algorithm. This OID often indicates a generic RSA key, even when such key
will be actually used for digital signatures.

DSA

DSA is a widespread public key signature algorithm. Its security is based on the discrete logarithm problem (DLP).
Given a cyclic group, a generator g, and an element h, it is hard to find an integer x such that 𝑔𝑥 = ℎ. The problem is
believed to be difficult, and it has been proved such (and therefore secure) for more than 30 years.

5.4. Crypto.PublicKey package 33

http://www.alvestrand.no/objectid/1.2.840.113549.1.1.1.html
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm
http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf

PyCryptodome Documentation, Release 3.6.1

The group is actually a sub-group over the integers modulo p, with p prime. The sub-group order is q, which is prime
too; it always holds that (p-1) is a multiple of q. The cryptographic strength is linked to the magnitude of p and q. The
signer holds a value x (0<x<q-1) as private key, and its public key (y where 𝑦 = 𝑔𝑥 mod 𝑝) is distributed.

In 2017, a sufficient size is deemed to be 2048 bits for p and 256 bits for q. For more information, see the most recent
ECRYPT report.

The algorithm can only be used for authentication (digital signature). DSA cannot be used for confidentiality (encryp-
tion).

The values (p,q,g) are called domain parameters; they are not sensitive but must be shared by both parties (the signer
and the verifier). Different signers can share the same domain parameters with no security concerns.

The DSA signature is twice as big as the size of q (64 bytes if q is 256 bit long).

This module provides facilities for generating new DSA keys and for constructing them from known components.

As an example, this is how you generate a new DSA key pair, save the public key in a file called public_key.pem,
sign a message (with Crypto.Signature.DSS), and verify it:

>>> from Crypto.PublicKey import DSA
>>> from Crypto.Signature import DSS
>>> from Crypto.Hash import SHA256
>>>
>>> # Create a new DSA key
>>> key = DSA.generate(2048)
>>> f = open("public_key.pem", "w")
>>> f.write(key.publickey().export_key(key))
>>>
>>> # Sign a message
>>> message = b"Hello"
>>> hash_obj = SHA256.new(message)
>>> signer = DSS.new(key, 'fips-186-3')
>>> signature = key.sign(hash_obj)
>>>
>>> # Load the public key
>>> f = open("public_key.pem", "r")
>>> hash_obj = SHA256.new(message)
>>> pub_key = DSA.import_key(f.read())
>>>
>>> # Verify the authenticity of the message
>>> if pub_key.verify(hash_obj, signature):
>>> print "OK"
>>> else:
>>> print "Incorrect signature"

Crypto.PublicKey.DSA.generate(bits, randfunc=None, domain=None)
Generate a new DSA key pair.

The algorithm follows Appendix A.1/A.2 and B.1 of FIPS 186-4, respectively for domain generation and key
pair generation.

Parameters

• bits (integer) – Key length, or size (in bits) of the DSA modulus p. It must be 1024,
2048 or 3072.

• randfunc (callable) – Random number generation function; it accepts a single
integer N and return a string of random data N bytes long. If not specified, Crypto.
Random.get_random_bytes() is used.

34 Chapter 5. API documentation

http://www.ecrypt.eu.org/documents/D.SPA.17.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

PyCryptodome Documentation, Release 3.6.1

• domain (tuple) – The DSA domain parameters p, q and g as a list of 3 integers. Size
of p and q must comply to FIPS 186-4. If not specified, the parameters are created anew.

Returns a new DSA key object

Return type DsaKey

Raises ValueError – when bits is too little, too big, or not a multiple of 64.

Crypto.PublicKey.DSA.construct(tup, consistency_check=True)
Construct a DSA key from a tuple of valid DSA components.

Parameters

• tup (tuple) – A tuple of long integers, with 4 or 5 items in the following order:

1. Public key (y).

2. Sub-group generator (g).

3. Modulus, finite field order (p).

4. Sub-group order (q).

5. Private key (x). Optional.

• consistency_check (boolean) – If True, the library will verify that the provided
components fulfil the main DSA properties.

Raises ValueError – when the key being imported fails the most basic DSA validity checks.

Returns a DSA key object

Return type DsaKey

class Crypto.PublicKey.DSA.DsaKey(key_dict)
Class defining an actual DSA key. Do not instantiate directly. Use generate(), construct() or
import_key() instead.

Variables

• p (integer) – DSA modulus

• q (integer) – Order of the subgroup

• g (integer) – Generator

• y (integer) – Public key

• x (integer) – Private key

domain()
The DSA domain parameters.

Returns tuple : (p,q,g)

exportKey(format=’PEM’, pkcs8=None, passphrase=None, protection=None, randfunc=None)
Export this DSA key.

Parameters

• format (string) – The encoding for the output:

– ’PEM’ (default). ASCII as per RFC1421/ RFC1423.

– ’DER’. Binary ASN.1 encoding.

– ’OpenSSH’. ASCII one-liner as per RFC4253. Only suitable for public keys, not
for private keys.

5.4. Crypto.PublicKey package 35

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc4253.txt

PyCryptodome Documentation, Release 3.6.1

• passphrase (string) – Private keys only. The pass phrase to protect the output.

• pkcs8 (boolean) – Private keys only. If True (default), the key is encoded with
PKCS#8. If False, it is encoded in the custom OpenSSL/OpenSSH container.

• protection (string) – Only in combination with a pass phrase. The encryption
scheme to use to protect the output.

If pkcs8 takes value True, this is the PKCS#8 algorithm to use for deriving the
secret and encrypting the private DSA key. For a complete list of algorithms, see
Crypto.IO.PKCS8. The default is PBKDF2WithHMAC-SHA1AndDES-EDE3-
CBC.

If pkcs8 is False, the obsolete PEM encryption scheme is used. It is based on
MD5 for key derivation, and Triple DES for encryption. Parameter protection is
then ignored.

The combination format='DER' and pkcs8=False is not allowed if a
passphrase is present.

• randfunc (callable) – A function that returns random bytes. By default it is
Crypto.Random.get_random_bytes().

Returns the encoded key

Return type byte string

Raises ValueError – when the format is unknown or when you try to encrypt a private key
with DER format and OpenSSL/OpenSSH.

Warning: If you don’t provide a pass phrase, the private key will be exported in the clear!

export_key(format=’PEM’, pkcs8=None, passphrase=None, protection=None, randfunc=None)
Export this DSA key.

Parameters

• format (string) – The encoding for the output:

– ’PEM’ (default). ASCII as per RFC1421/ RFC1423.

– ’DER’. Binary ASN.1 encoding.

– ’OpenSSH’. ASCII one-liner as per RFC4253. Only suitable for public keys, not
for private keys.

• passphrase (string) – Private keys only. The pass phrase to protect the output.

• pkcs8 (boolean) – Private keys only. If True (default), the key is encoded with
PKCS#8. If False, it is encoded in the custom OpenSSL/OpenSSH container.

• protection (string) – Only in combination with a pass phrase. The encryption
scheme to use to protect the output.

If pkcs8 takes value True, this is the PKCS#8 algorithm to use for deriving the
secret and encrypting the private DSA key. For a complete list of algorithms, see
Crypto.IO.PKCS8. The default is PBKDF2WithHMAC-SHA1AndDES-EDE3-
CBC.

If pkcs8 is False, the obsolete PEM encryption scheme is used. It is based on
MD5 for key derivation, and Triple DES for encryption. Parameter protection is
then ignored.

36 Chapter 5. API documentation

http://www.ietf.org/rfc/rfc5208.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc5208.txt

PyCryptodome Documentation, Release 3.6.1

The combination format='DER' and pkcs8=False is not allowed if a
passphrase is present.

• randfunc (callable) – A function that returns random bytes. By default it is
Crypto.Random.get_random_bytes().

Returns the encoded key

Return type byte string

Raises ValueError – when the format is unknown or when you try to encrypt a private key
with DER format and OpenSSL/OpenSSH.

Warning: If you don’t provide a pass phrase, the private key will be exported in the clear!

has_private()
Whether this is a DSA private key

publickey()
A matching DSA public key.

Returns a new DsaKey object

Crypto.PublicKey.DSA.import_key(extern_key, passphrase=None)
Import a DSA key.

Parameters

• extern_key (string or byte string) – The DSA key to import.

The following formats are supported for a DSA public key:

– X.509 certificate (binary DER or PEM)

– X.509 subjectPublicKeyInfo (binary DER or PEM)

– OpenSSH (ASCII one-liner, see RFC4253)

The following formats are supported for a DSA private key:

– PKCS#8 PrivateKeyInfo or EncryptedPrivateKeyInfo DER SE-
QUENCE (binary or PEM)

– OpenSSL/OpenSSH custom format (binary or PEM)

For details about the PEM encoding, see RFC1421/RFC1423.

• passphrase (string) – In case of an encrypted private key, this is the pass phrase
from which the decryption key is derived.

Encryption may be applied either at the PKCS#8 or at the PEM level.

Returns a DSA key object

Return type DsaKey

Raises ValueError – when the given key cannot be parsed (possibly because the pass phrase is
wrong).

ECC

ECC (Elliptic Curve Cryptography) is a modern and efficient type of public key cryptography. Its security is based on
the difficulty to solve discrete logarithms on the field defined by specific equations computed over a curve.

5.4. Crypto.PublicKey package 37

http://www.ietf.org/rfc/rfc4253.txt
http://www.ietf.org/rfc/rfc5208.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc5208.txt
http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/

PyCryptodome Documentation, Release 3.6.1

ECC can be used to create digital signatures or encrypting data.

The main benefit of ECC is that the size of a key is significantly smaller than with more traditional algorithms like
RSA or DSA.

For instance, consider the security level equivalent to AES128: an RSA key of similar strength must have a modulus
of 3072 bits (therefore the total size is 768 bytes, comprising modulus and private exponent). An ECC private needs
as little as 256 bits (32 bytes).

This module provides mechanisms for generating new ECC keys, exporting them using widely supported formats like
PEM or DER and importing them back.

Note: This module currently supports only ECC keys defined over the standard NIST P-256 curve (see FIPS 186-4,
Section D.1.2.3). More curves will be added in the future.

The following example demonstrates how to generate a new key, export it, and subsequentely reload it back into the
application:

>>> from Crypto.PublicKey import ECC
>>>
>>> key = ECC.generate(curve='P-256')
>>>
>>> f = open('myprivatekey.pem','wt')
>>> f.write(key.export_key(format='PEM'))
>>> f.close()
...
>>> f = open('myprivatekey.pem','rt')
>>> key = ECC.import_key(f.read())

The ECC key can be used to perform or verify ECDSA signatures, using the module Crypto.Signature.DSS.

class Crypto.PublicKey.ECC.EccKey(**kwargs)
Class defining an ECC key. Do not instantiate directly. Use generate(), construct() or
import_key() instead.

Variables

• curve (string) – The name of the ECC curve

• pointQ (EccPoint) – an ECC point representating the public component

• q (integer) – A scalar representating the private component

export_key(**kwargs)
Export this ECC key.

Parameters

• format (string) – The format to use for encoding the key:

– ’DER’. The key will be encoded in ASN.1 DER format (binary). For a public
key, the ASN.1 subjectPublicKeyInfo structure defined in RFC5480 will be
used. For a private key, the ASN.1 ECPrivateKey structure defined in RFC5915
is used instead (possibly within a PKCS#8 envelope, see the use_pkcs8 flag
below).

– ’PEM’. The key will be encoded in a PEM envelope (ASCII).

– ’OpenSSH’. The key will be encoded in the OpenSSH format (ASCII, public keys
only).

38 Chapter 5. API documentation

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/rfc5480
http://www.ietf.org/rfc/rfc5915.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.openssh.com/txt/rfc5656.txt

PyCryptodome Documentation, Release 3.6.1

• passphrase (byte string or string) – The passphrase to use for protect-
ing the private key.

• use_pkcs8 (boolean) – If True (default and recommended), the PKCS#8 rep-
resentation will be used.

If False, the much weaker PEM encryption mechanism will be used.

• protection (string) – When a private key is exported with password-protection
and PKCS#8 (both DER and PEM formats), this parameter MUST be present and
be a valid algorithm supported by Crypto.IO.PKCS8. It is recommended to use
PBKDF2WithHMAC-SHA1AndAES128-CBC.

• compress (boolean) – If True, a more compact representation of the public key
(X-coordinate only) is used.

If False (default), the full public key (in both its coordinates) will be exported.

Warning: If you don’t provide a passphrase, the private key will be exported in the clear!

Note: When exporting a private key with password-protection and PKCS#8 (both DER and PEM formats),
any extra parameters is passed to Crypto.IO.PKCS8.

Returns A multi-line string (for PEM and OpenSSH) or bytes (for DER) with the encoded
key.

has_private()
True if this key can be used for making signatures or decrypting data.

public_key()
A matching ECC public key.

Returns a new EccKey object

class Crypto.PublicKey.ECC.EccPoint(x, y)
A class to abstract a point over an Elliptic Curve.

Variables

• x (integer) – The X-coordinate of the ECC point

• y (integer) – The Y-coordinate of the ECC point

double()
Double this point (in-place operation).

Return EccPoint : this same object (to enable chaining)

exception Crypto.PublicKey.ECC.UnsupportedEccFeature

Crypto.PublicKey.ECC.construct(**kwargs)
Build a new ECC key (private or public) starting from some base components.

Parameters

• curve (string) – Mandatory. It must be “P-256”, “prime256v1” or “secp256r1”.

• d (integer) – Only for a private key. It must be in the range [1..order-1].

5.4. Crypto.PublicKey package 39

http://www.ietf.org/rfc/rfc5208.txt
http://www.ietf.org/rfc/rfc1423.txt
http://www.ietf.org/rfc/rfc5208.txt

PyCryptodome Documentation, Release 3.6.1

• point_x (integer) – Mandatory for a public key. X coordinate (affine) of the ECC
point.

• point_y (integer) – Mandatory for a public key. Y coordinate (affine) of the ECC
point.

Returns a new ECC key object

Return type EccKey

Crypto.PublicKey.ECC.generate(**kwargs)
Generate a new private key on the given curve.

Parameters

• curve (string) – Mandatory. It must be “P-256”, “prime256v1” or “secp256r1”.

• randfunc (callable) – Optional. The RNG to read randomness from. If None,
Crypto.Random.get_random_bytes() is used.

Crypto.PublicKey.ECC.import_key(encoded, passphrase=None)
Import an ECC key (public or private).

Parameters

• encoded (bytes or multi-line string) – The ECC key to import.

An ECC public key can be:

– An X.509 certificate, binary (DER) or ASCII (PEM)

– An X.509 subjectPublicKeyInfo, binary (DER) or ASCII (PEM)

– An OpenSSH line (e.g. the content of ~/.ssh/id_ecdsa, ASCII)

An ECC private key can be:

– In binary format (DER, see section 3 of RFC5915 or PKCS#8)

– In ASCII format (PEM or OpenSSH)

Private keys can be in the clear or password-protected.

For details about the PEM encoding, see RFC1421/RFC1423.

• passphrase (byte string) – The passphrase to use for decrypting a private key.
Encryption may be applied protected at the PEM level or at the PKCS#8 level. This
parameter is ignored if the key in input is not encrypted.

Returns a new ECC key object

Return type EccKey

Raises ValueError – when the given key cannot be parsed (possibly because the pass phrase is
wrong).

• RSA keys

• DSA keys

• Elliptic Curve keys

40 Chapter 5. API documentation

http://www.ietf.org/rfc/rfc5915.txt
http://www.ietf.org/rfc/rfc5208.txt
http://www.ietf.org/rfc/rfc1421.txt
http://www.ietf.org/rfc/rfc1423.txt

PyCryptodome Documentation, Release 3.6.1

5.4.3 Obsolete key type

El Gamal

Warning: Even though ElGamal algorithms are in theory reasonably secure, in practice there are no real good
reasons to prefer them to RSA instead.

Signature algorithm

The security of the ElGamal signature scheme is based (like DSA) on the discrete logarithm problem (DLP). Given a
cyclic group, a generator g, and an element h, it is hard to find an integer x such that 𝑔𝑥 = ℎ.

The group is the largest multiplicative sub-group of the integers modulo p, with p prime. The signer holds a value x
(0<x<p-1) as private key, and its public key (y where 𝑦 = 𝑔𝑥 mod 𝑝) is distributed.

The ElGamal signature is twice as big as p.

Encryption algorithm

The security of the ElGamal encryption scheme is based on the computational Diffie-Hellman problem (CDH). Given
a cyclic group, a generator g, and two integers a and b, it is difficult to find the element 𝑔𝑎𝑏 when only 𝑔𝑎 and 𝑔𝑏 are
known, and not a and b.

As before, the group is the largest multiplicative sub-group of the integers modulo p, with p prime. The receiver holds
a value a (0<a<p-1) as private key, and its public key (b where 𝑏 = 𝑔𝑎) is given to the sender.

The ElGamal ciphertext is twice as big as p.

Domain parameters

For both signature and encryption schemes, the values (p,g) are called domain parameters. They are not sensitive but
must be distributed to all parties (senders and receivers). Different signers can share the same domain parameters, as
can different recipients of encrypted messages.

Security

Both DLP and CDH problem are believed to be difficult, and they have been proved such (and therefore secure) for
more than 30 years.

The cryptographic strength is linked to the magnitude of p. In 2017, a sufficient size for p is deemed to be 2048 bits.
For more information, see the most recent ECRYPT report.

The signature is four times larger than the equivalent DSA, and the ciphertext is two times larger than the equivalent
RSA.

Functionality

This module provides facilities for generating new ElGamal keys and constructing them from known components.

5.4. Crypto.PublicKey package 41

http://www.cosic.esat.kuleuven.be/publications/talk-78.pdf
http://en.wikipedia.org/wiki/Computational_Diffie%E2%80%93Hellman_assumption
http://www.ecrypt.eu.org/ecrypt2/documents/D.SPA.20.pdf

PyCryptodome Documentation, Release 3.6.1

Crypto.PublicKey.ElGamal.generate(bits, randfunc)
Randomly generate a fresh, new ElGamal key.

The key will be safe for use for both encryption and signature (although it should be used for only one purpose).

Parameters

• bits (int) – Key length, or size (in bits) of the modulus p. The recommended value is
2048.

• randfunc (callable) – Random number generation function; it should accept a sin-
gle integer N and return a string of random N random bytes.

Returns an ElGamalKey object

Crypto.PublicKey.ElGamal.construct(tup)
Construct an ElGamal key from a tuple of valid ElGamal components.

The modulus p must be a prime. The following conditions must apply:

1 < 𝑔 < 𝑝− 1 (5.4)

𝑔𝑝−1 = 1 mod 1(5.5)
1 < 𝑥 < 𝑝− 1(5.6)
𝑔𝑥 = 𝑦 mod 𝑝(5.7)

Parameters tup (tuple) – A tuple with either 3 or 4 integers, in the following order:

1. Modulus (p).

2. Generator (g).

3. Public key (y).

4. Private key (x). Optional.

Raises ValueError – when the key being imported fails the most basic ElGamal validity checks.

Returns an ElGamalKey object

class Crypto.PublicKey.ElGamal.ElGamalKey(randfunc=None)
Class defining an ElGamal key. Do not instantiate directly. Use generate() or construct() instead.

Variables

• p – Modulus

• g – Generator

• y (integer) – Public key component

• x (integer) – Private key component

has_private()
Whether this is an ElGamal private key

publickey()
A matching ElGamal public key.

Returns a new ElGamalKey object

• ElGamal keys

42 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

5.5 Crypto.Protocol package

5.5.1 Key Derivation Functions

This module contains a collection of standard key derivation functions.

A key derivation function derives one or more secondary secret keys from one primary secret (a master key or a pass
phrase).

This is typically done to insulate the secondary keys from each other, to avoid that leakage of a secondary key com-
promises the security of the master key, or to thwart attacks on pass phrases (e.g. via rainbow tables).

Crypto.Protocol.KDF.HKDF(master, key_len, salt, hashmod, num_keys=1, context=None)
Derive one or more keys from a master secret using the HMAC-based KDF defined in RFC5869.

This KDF is not suitable for deriving keys from a password or for key stretching. Use PBKDF2() instead.

HKDF is a key derivation method approved by NIST in SP 800 56C.

Parameters

• master (byte string) – The unguessable value used by the KDF to generate the
other keys. It must be a high-entropy secret, though not necessarily uniform. It must not
be a password.

• salt (byte string) – A non-secret, reusable value that strengthens the randomness
extraction step. Ideally, it is as long as the digest size of the chosen hash. If empty, a
string of zeroes in used.

• key_len (integer) – The length in bytes of every derived key.

• hashmod (module) – A cryptographic hash algorithm from Crypto.Hash.
Crypto.Hash.SHA512 is a good choice.

• num_keys (integer) – The number of keys to derive. Every key is key_len bytes
long. The maximum cumulative length of all keys is 255 times the digest size.

• context (byte string) – Optional identifier describing what the keys are used for.

Returns A byte string or a tuple of byte strings.

Crypto.Protocol.KDF.PBKDF1(password, salt, dkLen, count=1000, hashAlgo=None)
Derive one key from a password (or passphrase).

This function performs key derivation according to an old version of the PKCS#5 standard (v1.5) or RFC2898.

Warning: Newer applications should use the more secure and versatile PBKDF2() instead.

Parameters

• password (string) – The secret password to generate the key from.

• salt (byte string) – An 8 byte string to use for better protection from dictionary
attacks. This value does not need to be kept secret, but it should be randomly chosen for
each derivation.

• dkLen (integer) – The length of the desired key. The default is 16 bytes, suitable for
instance for Crypto.Cipher.AES.

• count (integer) – The number of iterations to carry out. The recommendation is
1000 or more.

5.5. Crypto.Protocol package 43

http://tools.ietf.org/html/rfc5869
http://csrc.nist.gov/publications/nistpubs/800-56C/SP-800-56C.pdf
https://www.ietf.org/rfc/rfc2898.txt

PyCryptodome Documentation, Release 3.6.1

• hashAlgo (module) – The hash algorithm to use, as a module or an object from the
Crypto.Hash package. The digest length must be no shorter than dkLen. The default
algorithm is Crypto.Hash.SHA1.

Returns A byte string of length dkLen that can be used as key.

Crypto.Protocol.KDF.PBKDF2(password, salt, dkLen=16, count=1000, prf=None,
hmac_hash_module=None)

Derive one or more keys from a password (or passphrase).

This function performs key derivation according to the PKCS#5 standard (v2.0).

Parameters

• password (string or byte string) – The secret password to generate the key
from.

• salt (string or byte string) – A (byte) string to use for better protection from
dictionary attacks. This value does not need to be kept secret, but it should be randomly
chosen for each derivation. It is recommended to be at least 8 bytes long.

• dkLen (integer) – The cumulative length of the desired keys.

• count (integer) – The number of iterations to carry out.

• prf (callable) – A pseudorandom function. It must be a function that returns a
pseudorandom string from two parameters: a secret and a salt. If not specified, HMAC-
SHA1 is used.

• hmac_hash_module (module) – A module from Crypto.Hash implementing a
Merkle-Damgard cryptographic hash, which PBKDF2 must use in combination with
HMAC. This parameter is mutually exclusive with prf.

Returns A byte string of length dkLen that can be used as key material. If you wanted multiple
keys, just break up this string into segments of the desired length.

Crypto.Protocol.KDF.scrypt(password, salt, key_len, N, r, p, num_keys=1)
Derive one or more keys from a passphrase.

This function performs key derivation according to the scrypt algorithm, introduced in Percival’s paper “Stronger
key derivation via sequential memory-hard functions”.

This implementation is based on RFC7914.

Parameters

• password (string) – The secret pass phrase to generate the keys from.

• salt (string) – A string to use for better protection from dictionary attacks. This
value does not need to be kept secret, but it should be randomly chosen for each deriva-
tion. It is recommended to be at least 8 bytes long.

• key_len (integer) – The length in bytes of every derived key.

• N (integer) – CPU/Memory cost parameter. It must be a power of 2 and less than 232.

• r (integer) – Block size parameter.

• p (integer) – Parallelization parameter. It must be no greater than (232 − 1)/(4𝑟).

• num_keys (integer) – The number of keys to derive. Every key is key_len bytes
long. By default, only 1 key is generated. The maximum cumulative length of all keys is
(232 − 1) * 32 (that is, 128TB).

A good choice of parameters (N, r , p) was suggested by Colin Percival in his presentation in 2009:

44 Chapter 5. API documentation

http://www.tarsnap.com/scrypt.html
http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf
https://tools.ietf.org/html/rfc7914
http://www.tarsnap.com/scrypt/scrypt-slides.pdf

PyCryptodome Documentation, Release 3.6.1

• (16384, 8, 1) for interactive logins (<=100ms)

• (1048576, 8, 1) for file encryption (<=5s)

Returns A byte string or a tuple of byte strings.

5.5.2 Secret Sharing Schemes

This file implements secret sharing protocols.

In a (k, n) secret sharing protocol, a honest dealer breaks a secret into multiple shares that are distributed amongst n
players.

The protocol guarantees that nobody can learn anything about the secret, unless k players gather together to assemble
their shares.

class Crypto.Protocol.SecretSharing.Shamir
Shamir’s secret sharing scheme.

This class implements the Shamir’s secret sharing protocol described in his original paper “How to share a
secret”.

All shares are points over a 2-dimensional curve. At least k points (that is, shares) are required to reconstruct
the curve, and therefore the secret.

This implementation is primarilly meant to protect AES128 keys. To that end, the secret is associated to a
curve in the field GF(2^128) defined by the irreducible polynomial 𝑥128 + 𝑥7 + 𝑥2 + 𝑥 + 1 (the same used in
AES-GCM). The shares are always 16 bytes long.

Data produced by this implementation are compatible to the popular ssss tool if used with 128 bit security
(parameter “-s 128”) and no dispersion (parameter “-D”).

As an example, the following code shows how to protect a file meant for 5 people, in such a way that 2 of the 5
are required to reassemble it:

>>> from binascii import hexlify
>>> from Crypto.Cipher import AES
>>> from Crypto.Random import get_random_bytes
>>> from Crypto.Protocol.secret_sharing import Shamir
>>>
>>> key = get_random_bytes(16)
>>> shares = Shamir.split(2, 5, key)
>>> for idx, share in shares:
>>> print "Index #%d: %s" % (idx, hexlify(share))
>>>
>>> fi = open("clear_file.txt", "rb")
>>> fo = open("enc_file.txt", "wb")
>>>
>>> cipher = AES.new(key, AES.MODE_EAX)
>>> ct, tag = cipher.encrypt(fi.read()), cipher.digest()
>>> fo.write(nonce + tag + ct)

Each person can be given one share and the encrypted file.

When 2 people gather together with their shares, the can decrypt the file:

>>> from binascii import unhexlify
>>> from Crypto.Cipher import AES
>>> from Crypto.Protocol.secret_sharing import Shamir

(continues on next page)

5.5. Crypto.Protocol package 45

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.8910&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.8910&rep=rep1&type=pdf
http://point-at-infinity.org/ssss/

PyCryptodome Documentation, Release 3.6.1

(continued from previous page)

>>>
>>> shares = []
>>> for x in range(2):
>>> in_str = raw_input("Enter index and share separated by comma: ")
>>> idx, share = [strip(s) for s in in_str.split(",")]
>>> shares.append((idx, unhexlify(share)))
>>> key = Shamir.combine(shares)
>>>
>>> fi = open("enc_file.txt", "rb")
>>> nonce, tag = [fi.read(16) for x in range(2)]
>>> cipher = AES.new(key, AES.MODE_EAX, nonce)
>>> try:
>>> result = cipher.decrypt(fi.read())
>>> cipher.verify(tag)
>>> with open("clear_file2.txt", "wb") as fo:
>>> fo.write(result)
>>> except ValueError:
>>> print "The shares were incorrect"

Attention: Reconstruction does not guarantee that the result is authentic. In particular, a malicious par-
ticipant in the scheme has the ability to force an algebric transformation on the result by manipulating her
share.

It is important to use the scheme in combination with an authentication mechanism (the EAX cipher mode
in the example).

static combine(shares)
Recombine a secret, if enough shares are presented.

Parameters shares (tuples) – At least k tuples, each containin the index (an integer) and
the share (a byte string, 16 bytes long) that were assigned to a participant.

Returns The original secret, as a byte string (16 bytes long).

static split(k, n, secret)
Split a secret into n shares.

The secret can be reconstructed later when k shares out of the original n are recombined. Each share must
be kept confidential to the person it was assigned to.

Each share is associated to an index (starting from 1), which must be presented when the secret is recom-
bined.

Parameters

• k (integer) – The number of shares that must be present in order to reconstruct the
secret.

• n (integer) – The total number of shares to create (larger than k).

• secret (byte string) – The 16 byte string (e.g. the AES128 key) to split.

Returns n tuples, each containing the unique index (an integer) and the share (a byte string,
16 bytes long) meant for a participant.

• Key Derivation Functions

• Secret Sharing Schemes

46 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

5.6 Crypto.IO package

Modules for reading and writing cryptographic data.

• PEM

• PKCS#8

5.6.1 PEM

Set of functions for encapsulating data according to the PEM format.

PEM (Privacy Enhanced Mail) was an IETF standard for securing emails via a Public Key Infrastructure. It is specified
in RFC 1421-1424.

Even though it has been abandoned, the simple message encapsulation it defined is still widely used today for encoding
binary cryptographic objects like keys and certificates into text.

Crypto.IO.PEM.encode(data, marker, passphrase=None, randfunc=None)
Encode a piece of binary data into PEM format.

Parameters

• data (byte string) – The piece of binary data to encode.

• marker (string) – The marker for the PEM block (e.g. “PUBLIC KEY”). Note that
there is no official master list for all allowed markers. Still, you can refer to the OpenSSL
source code.

• passphrase (byte string) – If given, the PEM block will be encrypted. The key
is derived from the passphrase.

• randfunc (callable) – Random number generation function; it accepts an integer
N and returns a byte string of random data, N bytes long. If not given, a new one is
instantiated.

Returns The PEM block, as a string.

Crypto.IO.PEM.decode(pem_data, passphrase=None)
Decode a PEM block into binary.

Parameters

• pem_data (string) – The PEM block.

• passphrase (byte string) – If given and the PEM block is encrypted, the key will
be derived from the passphrase.

Returns A tuple with the binary data, the marker string, and a boolean to indicate if decryption
was performed.

Raises ValueError – if decoding fails, if the PEM file is encrypted and no passphrase has been
provided or if the passphrase is incorrect.

5.6.2 PKCS#8

PKCS#8 is a standard for storing and transferring private key information. The wrapped key can either be clear or
encrypted.

All encryption algorithms are based on passphrase-based key derivation. The following mechanisms are fully sup-
ported:

5.6. Crypto.IO package 47

https://github.com/openssl/openssl/blob/master/include/openssl/pem.h
http://www.ietf.org/rfc/rfc5208.txt

PyCryptodome Documentation, Release 3.6.1

• PBKDF2WithHMAC-SHA1AndAES128-CBC

• PBKDF2WithHMAC-SHA1AndAES192-CBC

• PBKDF2WithHMAC-SHA1AndAES256-CBC

• PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC

• scryptAndAES128-CBC

• scryptAndAES192-CBC

• scryptAndAES256-CBC

The following mechanisms are only supported for importing keys. They are much weaker than the ones listed above,
and they are provided for backward compatibility only:

• pbeWithMD5AndRC2-CBC

• pbeWithMD5AndDES-CBC

• pbeWithSHA1AndRC2-CBC

• pbeWithSHA1AndDES-CBC

Crypto.IO.PKCS8.wrap(private_key, key_oid, passphrase=None, protection=None, prot_params=None,
key_params=None, randfunc=None)

Wrap a private key into a PKCS#8 blob (clear or encrypted).

Parameters

• private_key (byte string) – The private key encoded in binary form. The actual
encoding is algorithm specific. In most cases, it is DER.

• key_oid (string) – The object identifier (OID) of the private key to wrap. It is a
dotted string, like 1.2.840.113549.1.1.1 (for RSA keys).

• passphrase (bytes string or string) – The secret passphrase from which
the wrapping key is derived. Set it only if encryption is required.

• protection (string) – The identifier of the algorithm to use for securely wrapping
the key. The default value is PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC.

• prot_params (dictionary) – Parameters for the protection algorithm.

Key Description
itera-
tion_count

The KDF algorithm is repeated several times to slow down brute force attacks
on passwords (called N or CPU/memory cost in scrypt). The default value for
PBKDF2 is 1000. The default value for scrypt is 16384.

salt_sizeSalt is used to thwart dictionary and rainbow attacks on passwords. The de-
fault value is 8 bytes.

block_size(scrypt only) Memory-cost (r). The default value is 8.
par-
al-
leliza-
tion

(scrypt only) CPU-cost (p). The default value is 1.

• key_params (DER object) – The algorithm parameters associated to the private key.
It is required for algorithms like DSA, but not for others like RSA.

• randfunc (callable) – Random number generation function; it should accept a sin-
gle integer N and return a string of random data, N bytes long. If not specified, a new
RNG will be instantiated from Crypto.Random.

48 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

Returns The PKCS#8-wrapped private key (possibly encrypted), as a byte string.

Crypto.IO.PKCS8.unwrap(p8_private_key, passphrase=None)
Unwrap a private key from a PKCS#8 blob (clear or encrypted).

Parameters

• p8_private_key (byte string) – The private key wrapped into a PKCS#8 blob,
DER encoded.

• passphrase (byte string or string) – The passphrase to use to decrypt the
blob (if it is encrypted).

Returns

A tuple containing

1. the algorithm identifier of the wrapped key (OID, dotted string)

2. the private key (byte string, DER encoded)

3. the associated parameters (byte string, DER encoded) or None

Raises ValueError – if decoding fails

5.7 Crypto.Random package

Crypto.Random.get_random_bytes(N)
Return a random byte string of length N.

5.7.1 Crypto.Random.random module

Crypto.Random.random.getrandbits(N)
Return a random integer, at most N bits long.

Crypto.Random.random.randrange([start], stop[, step])
Return a random integer in the range (start, stop, step). By default, start is 0 and step is 1.

Crypto.Random.random.randint(a, b)
Return a random integer in the range no smaller than a and no larger than b.

Crypto.Random.random.choice(seq)
Return a random element picked from the sequence seq.

Crypto.Random.random.shuffle(seq)
Randomly shuffle the sequence seq in-place.

Crypto.Random.random.sample(population, k)
Randomly chooses k distinct elements from the list population.

5.8 Crypto.Util package

Useful modules that don’t belong in any other package.

5.7. Crypto.Random package 49

PyCryptodome Documentation, Release 3.6.1

5.8.1 Crypto.Util.asn1 module

This module provides minimal support for encoding and decoding ASN.1 DER objects.

class Crypto.Util.asn1.DerObject(asn1Id=None, payload=”, implicit=None, con-
structed=False, explicit=None)

Base class for defining a single DER object.

This class should never be directly instantiated.

decode(der_encoded, strict=False)
Decode a complete DER element, and re-initializes this object with it.

Parameters der_encoded (byte string) – A complete DER element.

Raises ValueError – in case of parsing errors.

encode()
Return this DER element, fully encoded as a binary byte string.

class Crypto.Util.asn1.DerInteger(value=0, implicit=None, explicit=None)
Class to model a DER INTEGER.

An example of encoding is:

>>> from Crypto.Util.asn1 import DerInteger
>>> from binascii import hexlify, unhexlify
>>> int_der = DerInteger(9)
>>> print hexlify(int_der.encode())

which will show 020109, the DER encoding of 9.

And for decoding:

>>> s = unhexlify(b'020109')
>>> try:
>>> int_der = DerInteger()
>>> int_der.decode(s)
>>> print int_der.value
>>> except ValueError:
>>> print "Not a valid DER INTEGER"

the output will be 9.

Variables value (integer) – The integer value

decode(der_encoded, strict=False)
Decode a complete DER INTEGER DER, and re-initializes this object with it.

Parameters der_encoded (byte string) – A complete INTEGER DER element.

Raises ValueError – in case of parsing errors.

encode()
Return the DER INTEGER, fully encoded as a binary string.

class Crypto.Util.asn1.DerOctetString(value=”, implicit=None)
Class to model a DER OCTET STRING.

An example of encoding is:

50 Chapter 5. API documentation

ftp://ftp.rsasecurity.com/pub/pkcs/ascii/layman.asc

PyCryptodome Documentation, Release 3.6.1

>>> from Crypto.Util.asn1 import DerOctetString
>>> from binascii import hexlify, unhexlify
>>> os_der = DerOctetString(b'\xaa')
>>> os_der.payload += b'\xbb'
>>> print hexlify(os_der.encode())

which will show 0402aabb, the DER encoding for the byte string b'\xAA\xBB'.

For decoding:

>>> s = unhexlify(b'0402aabb')
>>> try:
>>> os_der = DerOctetString()
>>> os_der.decode(s)
>>> print hexlify(os_der.payload)
>>> except ValueError:
>>> print "Not a valid DER OCTET STRING"

the output will be aabb.

Variables payload (byte string) – The content of the string

class Crypto.Util.asn1.DerNull
Class to model a DER NULL element.

class Crypto.Util.asn1.DerSequence(startSeq=None, implicit=None)
Class to model a DER SEQUENCE.

This object behaves like a dynamic Python sequence.

Sub-elements that are INTEGERs behave like Python integers.

Any other sub-element is a binary string encoded as a complete DER sub-element (TLV).

An example of encoding is:

>>> from Crypto.Util.asn1 import DerSequence, DerInteger
>>> from binascii import hexlify, unhexlify
>>> obj_der = unhexlify('070102')
>>> seq_der = DerSequence([4])
>>> seq_der.append(9)
>>> seq_der.append(obj_der.encode())
>>> print hexlify(seq_der.encode())

which will show 3009020104020109070102, the DER encoding of the sequence containing 4, 9, and the
object with payload 02.

For decoding:

>>> s = unhexlify(b'3009020104020109070102')
>>> try:
>>> seq_der = DerSequence()
>>> seq_der.decode(s)
>>> print len(seq_der)
>>> print seq_der[0]
>>> print seq_der[:]
>>> except ValueError:
>>> print "Not a valid DER SEQUENCE"

the output will be:

5.8. Crypto.Util package 51

PyCryptodome Documentation, Release 3.6.1

3
4
[4, 9, b'{}']

decode(der_encoded, nr_elements=None, only_ints_expected=False, strict=False)
Decode a complete DER SEQUENCE, and re-initializes this object with it.

Parameters

• der_encoded (byte string) – A complete SEQUENCE DER element.

• nr_elements (None or integer or list of integers) – The num-
ber of members the SEQUENCE can have

• only_ints_expected (boolean) – Whether the SEQUENCE is expected to
contain only integers.

• struct (boolean) – Whether decoding must check for strict DER compliancy.

Raises ValueError – in case of parsing errors.

DER INTEGERs are decoded into Python integers. Any other DER element is not decoded. Its validity
is not checked.

encode()
Return this DER SEQUENCE, fully encoded as a binary string.

Raises ValueError – if some elements in the sequence are neither integers nor byte strings.

hasInts(only_non_negative=True)
Return the number of items in this sequence that are integers.

Parameters only_non_negative (boolean) – If True, negative integers are not
counted in.

hasOnlyInts(only_non_negative=True)
Return True if all items in this sequence are integers or non-negative integers.

This function returns False is the sequence is empty, or at least one member is not an integer.

Parameters only_non_negative (boolean) – If True, the presence of negative inte-
gers causes the method to return False.

class Crypto.Util.asn1.DerObjectId(value=”, implicit=None, explicit=None)
Class to model a DER OBJECT ID.

An example of encoding is:

>>> from Crypto.Util.asn1 import DerObjectId
>>> from binascii import hexlify, unhexlify
>>> oid_der = DerObjectId("1.2")
>>> oid_der.value += ".840.113549.1.1.1"
>>> print hexlify(oid_der.encode())

which will show 06092a864886f70d010101, the DER encoding for the RSA Object Identifier 1.2.840.
113549.1.1.1.

For decoding:

>>> s = unhexlify(b'06092a864886f70d010101')
>>> try:
>>> oid_der = DerObjectId()

(continues on next page)

52 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

(continued from previous page)

>>> oid_der.decode(s)
>>> print oid_der.value
>>> except ValueError:
>>> print "Not a valid DER OBJECT ID"

the output will be 1.2.840.113549.1.1.1.

Variables value (string) – The Object ID (OID), a dot separated list of integers

decode(der_encoded)
Decode a complete DER OBJECT ID, and re-initializes this object with it.

Parameters der_encoded (byte string) – A complete DER OBJECT ID.

Raises ValueError – in case of parsing errors.

encode()
Return the DER OBJECT ID, fully encoded as a binary string.

class Crypto.Util.asn1.DerBitString(value=”, implicit=None, explicit=None)
Class to model a DER BIT STRING.

An example of encoding is:

>>> from Crypto.Util.asn1 import DerBitString
>>> from binascii import hexlify, unhexlify
>>> bs_der = DerBitString(b'\xaa')
>>> bs_der.value += b'\xbb'
>>> print hexlify(bs_der.encode())

which will show 040300aabb, the DER encoding for the bit string b'\xAA\xBB'.

For decoding:

>>> s = unhexlify(b'040300aabb')
>>> try:
>>> bs_der = DerBitString()
>>> bs_der.decode(s)
>>> print hexlify(bs_der.value)
>>> except ValueError:
>>> print "Not a valid DER BIT STRING"

the output will be aabb.

Variables value (byte string) – The content of the string

decode(der_encoded)
Decode a complete DER BIT STRING, and re-initializes this object with it.

Parameters der_encoded (byte string) – a complete DER BIT STRING.

Raises ValueError – in case of parsing errors.

encode()
Return the DER BIT STRING, fully encoded as a binary string.

class Crypto.Util.asn1.DerSetOf(startSet=None, implicit=None)
Class to model a DER SET OF.

An example of encoding is:

5.8. Crypto.Util package 53

PyCryptodome Documentation, Release 3.6.1

>>> from Crypto.Util.asn1 import DerBitString
>>> from binascii import hexlify, unhexlify
>>> so_der = DerSetOf([4,5])
>>> so_der.add(6)
>>> print hexlify(so_der.encode())

which will show 3109020104020105020106, the DER encoding of a SET OF with items 4,5, and 6.

For decoding:

>>> s = unhexlify(b'3109020104020105020106')
>>> try:
>>> so_der = DerSetOf()
>>> so_der.decode(s)
>>> print [x for x in so_der]
>>> except ValueError:
>>> print "Not a valid DER SET OF"

the output will be [4, 5, 6].

add(elem)
Add an element to the set.

Parameters elem (byte string or integer) – An element of the same type of ob-
jects already in the set. It can be an integer or a DER encoded object.

decode(der_encoded)
Decode a complete SET OF DER element, and re-initializes this object with it.

DER INTEGERs are decoded into Python integers. Any other DER element is left undecoded; its validity
is not checked.

Parameters der_encoded (byte string) – a complete DER BIT SET OF.

Raises ValueError – in case of parsing errors.

encode()
Return this SET OF DER element, fully encoded as a binary string.

5.8.2 Crypto.Util.Padding module

This module provides minimal support for adding and removing standard padding from data.

Crypto.Util.Padding.pad(data_to_pad, block_size, style=’pkcs7’)
Apply standard padding.

Parameters

• data_to_pad (byte string) – The data that needs to be padded.

• block_size (integer) – The block boundary to use for padding. The output length
is guaranteed to be a multiple of block_size.

• style (string) – Padding algorithm. It can be ‘pkcs7’ (default), ‘iso7816’ or ‘x923’.

Returns the original data with the appropriate padding added at the end.

Return type byte string

Crypto.Util.Padding.unpad(padded_data, block_size, style=’pkcs7’)
Remove standard padding.

54 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

Parameters

• padded_data (byte string) – A piece of data with padding that needs to be
stripped.

• block_size (integer) – The block boundary to use for padding. The input length
must be a multiple of block_size.

• style (string) – Padding algorithm. It can be ‘pkcs7’ (default), ‘iso7816’ or ‘x923’.

Returns data without padding.

Return type byte string

Raises ValueError – if the padding is incorrect.

5.8.3 Crypto.Util.RFC1751 module

Crypto.Util.RFC1751.english_to_key(s)
Transform a string into a corresponding key.

Example:

>>> from Crypto.Util.RFC1751 import english_to_key
>>> english_to_key('RAM LOIS GOAD CREW CARE HIT')
b'66666666'

Parameters s (string) – the string with the words separated by whitespace; the number of
words must be a multiple of 6.

Returns A byte string.

Crypto.Util.RFC1751.key_to_english(key)
Transform an arbitrary key into a string containing English words.

Example:

>>> from Crypto.Util.RFC1751 import key_to_english
>>> key_to_english(b'66666666')
'RAM LOIS GOAD CREW CARE HIT'

Parameters key (byte string) – The key to convert. Its length must be a multiple of 8.

Returns A string of English words.

5.8.4 Crypto.Util.strxor module

Fast XOR for byte strings.

Crypto.Util.strxor.strxor(term1, term2)
XOR of two byte strings. They must have equal length.

Returns A new byte string, term1 xored with term2.

Crypto.Util.strxor.strxor_c(term, c)
XOR of a byte string with a repeated sequence of characters.

Returns A new byte string, term with all its bytes xored with c.

5.8. Crypto.Util package 55

PyCryptodome Documentation, Release 3.6.1

5.8.5 Crypto.Util.Counter module

Fast counter functions for CTR cipher modes.

CTR is a chaining mode for symmetric block encryption or decryption. Messages are divideded into blocks, and the
cipher operation takes place on each block using the secret key and a unique counter block.

The most straightforward way to fulfil the uniqueness property is to start with an initial, random counter block value,
and increment it as the next block is processed.

The block ciphers from Crypto.Cipher (when configured in MODE_CTR mode) invoke a callable object (the
counter parameter) to get the next counter block. Unfortunately, the Python calling protocol leads to major perfor-
mance degradations.

The counter functions instantiated by this module will be invoked directly by the ciphers in Crypto.Cipher. The
fact that the Python layer is bypassed lead to more efficient (and faster) execution of CTR cipher modes.

An example of usage is the following:

>>> from Crypto.Cipher import AES
>>> from Crypto.Util import Counter
>>> from Crypto import Random
>>>
>>> nonce = Random.get_random_bytes(8)
>>> ctr = Counter.new(64, nonce)
>>> key = b'AES-128 symm key'
>>> plaintext = b'X'*1000000
>>> cipher = AES.new(key, AES.MODE_CTR, counter=ctr)
>>> ciphertext = cipher.encrypt(plaintext)

Crypto.Util.Counter.new(nbits, prefix=”, suffix=”, initial_value=1, little_endian=False, al-
low_wraparound=False)

Create a stateful counter block function suitable for CTR encryption modes.

Each call to the function returns the next counter block. Each counter block is made up by three parts:

prefix counter value postfix

The counter value is incremented by 1 at each call.

Parameters

• nbits (integer) – Length of the desired counter value, in bits. It must be a multiple
of 8.

• prefix (byte string) – The constant prefix of the counter block. By default, no
prefix is used.

• suffix (byte string) – The constant postfix of the counter block. By default, no
suffix is used.

• initial_value (integer) – The initial value of the counter. Default value is 1.

• little_endian (boolean) – If True, the counter number will be encoded in little
endian format. If False (default), in big endian format.

• allow_wraparound (boolean) – This parameter is ignored.

Returns An object that can be passed with the counter parameter to a CTR mode cipher.

It must hold that len(prefix) + nbits//8 + len(suffix) matches the block size of the underlying block cipher.

56 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

5.8.6 Crypto.Util.number module

Crypto.Util.number.GCD(x, y)
Greatest Common Denominator of x and y.

Crypto.Util.number.bytes_to_long(s)
Convert a byte string to a long integer (big endian).

In Python 3.2+, use the native method instead:

>>> int.from_bytes(s, 'big')

For instance:

>>> int.from_bytes(b'\P', 'big')
80

This is (essentially) the inverse of long_to_bytes().

Crypto.Util.number.getPrime(N, randfunc=None)
Return a random N-bit prime number.

If randfunc is omitted, then Random.get_random_bytes() is used.

Crypto.Util.number.getRandomInteger(N, randfunc=None)
Return a random number at most N bits long.

If randfunc is omitted, then Random.get_random_bytes() is used.

Deprecated since version 3.0: This function is for internal use only and may be renamed or removed in the
future. Use Crypto.Random.random.getrandbits() instead.

Crypto.Util.number.getRandomNBitInteger(N, randfunc=None)
Return a random number with exactly N-bits, i.e. a random number between 2**(N-1) and (2**N)-1.

If randfunc is omitted, then Random.get_random_bytes() is used.

Deprecated since version 3.0: This function is for internal use only and may be renamed or removed in the
future.

Crypto.Util.number.getRandomRange(a, b, randfunc=None)
Return a random number n so that a <= n < b.

If randfunc is omitted, then Random.get_random_bytes() is used.

Deprecated since version 3.0: This function is for internal use only and may be renamed or removed in the
future. Use Crypto.Random.random.randrange() instead.

Crypto.Util.number.getStrongPrime(N, e=0, false_positive_prob=1e-06, randfunc=None)
Return a random strong N-bit prime number. In this context, p is a strong prime if p-1 and p+1 have at least one
large prime factor.

Parameters

• N (integer) – the exact length of the strong prime. It must be a multiple of 128 and >
512.

• e (integer) – if provided, the returned prime (minus 1) will be coprime to e and thus
suitable for RSA where e is the public exponent.

• false_positive_prob (float) – The statistical probability for the result not to be
actually a prime. It defaults to 10-6. Note that the real probability of a false-positive is far
less. This is just the mathematically provable limit.

5.8. Crypto.Util package 57

PyCryptodome Documentation, Release 3.6.1

• randfunc (callable) – A function that takes a parameter N and that re-
turns a random byte string of such length. If omitted, Crypto.Random.
get_random_bytes() is used.

Returns The new strong prime.

Deprecated since version 3.0: This function is for internal use only and may be renamed or removed in the
future.

Crypto.Util.number.inverse(u, v)
The inverse of u mod v.

Crypto.Util.number.isPrime(N, false_positive_prob=1e-06, randfunc=None)
Test if a number N is a prime.

Parameters

• false_positive_prob (float) – The statistical probability for the result not to be
actually a prime. It defaults to 10-6. Note that the real probability of a false-positive is far
less. This is just the mathematically provable limit.

• randfunc (callable) – A function that takes a parameter N and that re-
turns a random byte string of such length. If omitted, Crypto.Random.
get_random_bytes() is used.

Returns True is the input is indeed prime.

Crypto.Util.number.long_to_bytes(n, blocksize=0)
Convert an integer to a byte string.

In Python 3.2+, use the native method instead:

>>> n.to_bytes(blocksize, 'big')

For instance:

>>> n = 80
>>> n.to_bytes(2, 'big')
b'\P'

If the optional blocksize is provided and greater than zero, the byte string is padded with binary zeros (on
the front) so that the total length of the output is a multiple of blocksize.

If blocksize is zero or not provided, the byte string will be of minimal length.

Crypto.Util.number.size(N)
Returns the size of the number N in bits.

All cryptographic functionalities are organized in sub-packages; each sub-package is dedicated to solving a specific
class of problems.

58 Chapter 5. API documentation

PyCryptodome Documentation, Release 3.6.1

Package Description
Crypto.Cipher Modules for protecting confidentiality that is, for encrypting and decrypting data (example:

AES).
Crypto.Signature Modules for assuring authenticity, that is, for creating and verifying digital signatures of

messages (example: PKCS#1 v1.5).
Crypto.Hash Modules for creating cryptographic digests (example: SHA-256).
Crypto.PublicKey Modules for generating, exporting or importing public keys (example: RSA or ECC).
Crypto.Protocol Modules for faciliting secure communications between parties, in most cases by leveraging

cryptograpic primitives from other modules (example: Shamir’s Secret Sharing scheme).
Crypto.IO Modules for dealing with encodings commonly used for cryptographic data (example:

PEM).
Crypto.Random Modules for generating random data.
Crypto.Util General purpose routines (example: XOR for byte strings).

In certain cases, there is some overlap between these categories. For instance, authenticity is also provided by
Message Authentication Codes, and some can be built using digests, so they are included in the Crypto.Hash
package (example: HMAC). Also, cryptographers have over time realized that encryption without authentication is
often of limited value so recent ciphers found in the Crypto.Cipher package embed it (example: GCM).

PyCryptodome strives to maintain strong backward compatibility with the old PyCrypto’s API (except for those few
cases where that is harmful to security) so a few modules don’t appear where they should (example: the ASN.1 module
is under Crypto.Util as opposed to Crypto.IO).

5.8. Crypto.Util package 59

PyCryptodome Documentation, Release 3.6.1

60 Chapter 5. API documentation

CHAPTER 6

Examples

6.1 Encrypt data with AES

The following code generates a new AES128 key and encrypts a piece of data into a file. We use the EAX mode because
it allows the receiver to detect any unauthorized modification (similarly, we could have used other authenticated
encryption modes like GCM, CCM or SIV).

from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes

key = get_random_bytes(16)
cipher = AES.new(key, AES.MODE_EAX)
ciphertext, tag = cipher.encrypt_and_digest(data)

file_out = open("encrypted.bin", "wb")
[file_out.write(x) for x in (cipher.nonce, tag, ciphertext)]

At the other end, the receiver can securely load the piece of data back (if they know the key!). Note that the code
generates a ValueError exception when tampering is detected.

from Crypto.Cipher import AES

file_in = open("encrypted.bin", "rb")
nonce, tag, ciphertext = [file_in.read(x) for x in (16, 16, -1)]

let's assume that the key is somehow available again
cipher = AES.new(key, AES.MODE_EAX, nonce)
data = cipher.decrypt_and_verify(ciphertext, tag)

61

http://en.wikipedia.org/wiki/EAX_mode
http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html
http://blog.cryptographyengineering.com/2012/05/how-to-choose-authenticated-encryption.html
http://en.wikipedia.org/wiki/GCM_mode
http://en.wikipedia.org/wiki/CCM_mode
http://tools.ietf.org/html/rfc5297

PyCryptodome Documentation, Release 3.6.1

6.2 Generate an RSA key

The following code generates a new RSA key pair (secret) and saves it into a file, protected by a password. We use
the scrypt key derivation function to thwart dictionary attacks. At the end, the code prints our the RSA public key in
ASCII/PEM format:

from Crypto.PublicKey import RSA

secret_code = "Unguessable"
key = RSA.generate(2048)
encrypted_key = key.export_key(passphrase=secret_code, pkcs=8,

protection="scryptAndAES128-CBC")

file_out = open("rsa_key.bin", "wb")
file_out.write(encrypted_key)

print(key.publickey().export_key())

The following code reads the private RSA key back in, and then prints again the public key:

from Crypto.PublicKey import RSA

secret_code = "Unguessable"
encoded_key = open("rsa_key.bin", "rb").read()
key = RSA.import_key(encoded_key, passphrase=secret_code)

print(key.publickey().export_key())

6.3 Generate public key and private key

The following code generates public key stored in receiver.pem and private key stored in private.pem. These
files will be used in the examples below. Everytime, it generates different public key and private key pair.

from Crypto.PublicKey import RSA

key = RSA.generate(2048)
private_key = key.export_key()
file_out = open("private.pem", "wb")
file_out.write(private_key)

public_key = key.publickey().export_key()
file_out = open("receiver.pem", "wb")
file_out.write(public_key)

6.4 Encrypt data with RSA

The following code encrypts a piece of data for a receiver we have the RSA public key of. The RSA public key is
stored in a file called receiver.pem.

Since we want to be able to encrypt an arbitrary amount of data, we use a hybrid encryption scheme. We use RSA
with PKCS#1 OAEP for asymmetric encryption of an AES session key. The session key can then be used to encrypt
all the actual data.

62 Chapter 6. Examples

http://it.wikipedia.org/wiki/Scrypt
http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

PyCryptodome Documentation, Release 3.6.1

As in the first example, we use the EAX mode to allow detection of unauthorized modifications.

from Crypto.PublicKey import RSA
from Crypto.Random import get_random_bytes
from Crypto.Cipher import AES, PKCS1_OAEP

data = "I met aliens in UFO. Here is the map.".encode("utf-8")
file_out = open("encrypted_data.bin", "wb")

recipient_key = RSA.import_key(open("receiver.pem").read())
session_key = get_random_bytes(16)

Encrypt the session key with the public RSA key
cipher_rsa = PKCS1_OAEP.new(recipient_key)
enc_session_key = cipher_rsa.encrypt(session_key)

Encrypt the data with the AES session key
cipher_aes = AES.new(session_key, AES.MODE_EAX)
ciphertext, tag = cipher_aes.encrypt_and_digest(data)
[file_out.write(x) for x in (enc_session_key, cipher_aes.nonce, tag, ciphertext)]

The receiver has the private RSA key. They will use it to decrypt the session key first, and with that the rest of the file:

from Crypto.PublicKey import RSA
from Crypto.Cipher import AES, PKCS1_OAEP

file_in = open("encrypted_data.bin", "rb")

private_key = RSA.import_key(open("private.pem").read())

enc_session_key, nonce, tag, ciphertext = \
[file_in.read(x) for x in (private_key.size_in_bytes(), 16, 16, -1)]

Decrypt the session key with the private RSA key
cipher_rsa = PKCS1_OAEP.new(private_key)
session_key = cipher_rsa.decrypt(enc_session_key)

Decrypt the data with the AES session key
cipher_aes = AES.new(session_key, AES.MODE_EAX, nonce)
data = cipher_aes.decrypt_and_verify(ciphertext, tag)
print(data.decode("utf-8"))

6.4. Encrypt data with RSA 63

PyCryptodome Documentation, Release 3.6.1

64 Chapter 6. Examples

CHAPTER 7

Contribute and support

• Do not be afraid to contribute with small and apparently insignificant improvements like correction to typos.
Every change counts.

• Read carefully the License of PyCryptodome. By submitting your code, you acknowledge that you accept to
release it according to the BSD 2-clause license.

• You must disclaim which parts of your code in your contribution were partially copied or derived from an
existing source. Ensure that the original is licensed in a way compatible to the BSD 2-clause license.

• You can propose changes in any way you find most convenient. However, the preferred approach is to:

– Clone the main repository on GitHub.

– Create a branch and modify the code.

– Send a pull request upstream with a meaningful description.

• Provide tests (in Crypto.SelfTest) along with code. If you fix a bug add a test that fails in the current
version and passes with your change.

• If your change breaks backward compatibility, hightlight it and include a justification.

• Ensure that your code complies to PEP8 and PEP257.

• Ensure that your code does not use constructs or includes modules not present in Python 2.4.

• Add a short summary of the change to the file Changelog.rst.

• Add your name to the list of contributors in the file AUTHORS.rst.

The PyCryptodome mailing list is hosted on Google Groups. You can mail any comment or question to py-
cryptodome@googlegroups.com.

Bug reports can be filed on the GitHub tracker.

65

http://opensource.org/licenses/BSD-2-Clause
https://github.com/Legrandin/pycryptodome
https://help.github.com/articles/using-pull-requests
http://www.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-0257/
http://rgruet.free.fr/PQR24/PQR2.4.html
https://groups.google.com/forum/#!forum/pycryptodome
https://github.com/Legrandin/pycryptodome/issues

PyCryptodome Documentation, Release 3.6.1

66 Chapter 7. Contribute and support

CHAPTER 8

Future plans

Future releases will include:

• Update Crypto.Signature.DSS to FIPS 186-4

• Make all hash objects non-copiable and immutable after the first digest

• Add alias ‘segment_bits’ to parameter ‘segment_size’ for CFB

• Coverage testing

• Add support for memoryview/buffer interface

• Implement AES with bitslicing

• Add unit tests for PEM I/O

• Move old ciphers into a Museum submodule

• Add more ECC curves

• Import/export of ECC keys with compressed points

• Add algorithms:

– Poly1305

– Elliptic Curves (ECIES, ECDH)

– Camellia, GOST

– Diffie-Hellman

– bcrypt

– argon2

– SRP

• Add more key management:

– Export/import of DSA domain parameters

– JWK

67

PyCryptodome Documentation, Release 3.6.1

• Add support for CMS/PKCS#7

• Add support for RNG backed by PKCS#11 and/or KMIP

• Add support for Format-Preserving Encryption

• Remove dependency on libtomcrypto headers

• Speed up (T)DES with a bitsliced implementation

• Add support for PCLMULQDQ in AES-GCM

• Run lint on the C code

• Add (minimal) support for PGP

• Add (minimal) support for PKIX / X.509

68 Chapter 8. Future plans

CHAPTER 9

Changelog

9.1 3.6.1 (15 April 2018)

9.1.1 New features

• Added Google Wycheproof tests (https://github.com/google/wycheproof) for RSA, DSA, ECDSA, GCM, SIV,
EAX, CMAC.

• New parameter mac_len (length of MAC tag) for CMAC.

9.1.2 Resolved issues

• In certain circumstances (at counter wrapping, which happens on average after 32 GBi) AES GCM produced
wrong ciphertexts.

• Method encrypt() of AES SIV cipher could be still called, whereas only encrypt_and_digest()
should be allowed.

9.2 3.6.0 (8 April 2018)

9.2.1 New features

• Introduced export_key and deprecated exportKey for DSA and RSA key objects.

• Ciphers and hash functions accept memoryview objects in input.

• Added support for SHA-512/224 and SHA-512/256.

69

https://github.com/google/wycheproof

PyCryptodome Documentation, Release 3.6.1

9.2.2 Resolved issues

• Reintroduced Crypto.__version__ variable as in PyCrypto.

• Fixed compilation problem with MinGW.

9.3 3.5.1 (8 March 2018)

9.3.1 Resolved issues

• GH#142. Fix mismatch with declaration and definition of addmul128.

9.4 3.5.0 (7 March 2018)

9.4.1 New features

• Import and export of ECC curves in compressed form.

• The initial counter for a cipher in CTR mode can be a byte string (in addition to an integer).

• Faster PBKDF2 for HMAC-based PRFs (at least 20x for short passwords, more for longer passwords). Thanks
to Christian Heimes for pointing out the implementation was under-optimized.

• The salt for PBKDF2 can be either a string or bytes (GH#67).

• Ciphers and hash functions accept data as bytearray, not just binary strings.

• The old SHA-1 and MD5 hash functions are available even when Python’s own hashlib does not include them.

9.4.2 Resolved issues

• Without libgmp, modular exponentiation (since v3.4.8) crashed on 32-bit big-endian systems.

9.4.3 Breaks in compatibility

• Removed support for Python < 2.6.

9.5 3.4.12 (5 February 2018)

9.5.1 Resolved issues

• GH#129. pycryptodomex could only be installed via wheels.

70 Chapter 9. Changelog

PyCryptodome Documentation, Release 3.6.1

9.6 3.4.11 (5 February 2018)

9.6.1 Resolved issues

• GH#121. the record list was still not correct due to PEP3147 and __pycache__ directories. Thanks again to
John O’Brien.

9.7 3.4.10 (2 February 2018)

9.7.1 Resolved issues

• When creating ElGamal keys, the generator wasn’t a square residue: ElGamal encryption done with those keys
cannot be secure under the DDH assumption. Thanks to Weikeng Chen.

9.8 3.4.9 (1 February 2018)

9.8.1 New features

• More meaningful error messages while importing an ECC key.

9.8.2 Resolved issues

• GH#123 and #125. The SSE2 command line switch was not always passed on 32-bit x86 platforms.

• GH#121. The record list (–record) was not always correctly filled for the pycryptodomex package. Thanks to
John W. O’Brien.

9.9 3.4.8 (27 January 2018)

9.9.1 New features

• Added a native extension in pure C for modular exponentiation, optimized for SSE2 on x86. In the process, we
drop support for the arbitrary arithmetic library MPIR on Windows, which is painful to compile and deploy. The
custom modular exponentiation is 130% (160%) slower on an Intel CPU in 32-bit (64-bit) mode, compared to
MPIR. Still, that is much faster that CPython’s own pow() function which is 900% (855%) slower than MPIR.
Support for the GMP library on Unix remains.

• Added support for manylinux wheels.

• Support for Python 3.7.

9.9.2 Resolved issues

• The DSA parameter ‘p’ prime was created with 255 bits cleared (but still with the correct strength).

• GH#106. Not all docs were included in the tar ball. Thanks to Christopher Hoskin.

• GH#109. ECDSA verification failed for DER encoded signatures. Thanks to Alastair Houghton.

9.6. 3.4.11 (5 February 2018) 71

PyCryptodome Documentation, Release 3.6.1

• Human-friendly messages for padding errors with ECB and CBC.

9.10 3.4.7 (26 August 2017)

9.10.1 New features

• API documentation is made with sphinx instead of epydoc.

• Start using importlib instead of imp where available.

9.10.2 Resolved issues

• GH#82. Fixed PEM header for RSA/DSA public keys.

9.11 3.4.6 (18 May 2017)

9.11.1 Resolved issues

• GH#65. Keccak, SHA3, SHAKE and the seek functionality for ChaCha20 were not working on big endian
machines. Fixed. Thanks to Mike Gilbert.

• A few fixes in the documentation.

9.12 3.4.5 (6 February 2017)

9.12.1 Resolved issues

• The library can also be compiled using MinGW.

9.13 3.4.4 (1 February 2017)

9.13.1 Resolved issues

• Removed use of alloca().

• [Security] Removed implementation of deprecated “quick check” feature of PGP block cipher mode.

• Improved the performance of scrypt by converting some Python to C.

9.14 3.4.3 (17 October 2016)

9.14.1 Resolved issues

• Undefined warning was raised with libgmp version < 5

• Forgot inclusion of alloca.h

72 Chapter 9. Changelog

PyCryptodome Documentation, Release 3.6.1

• Fixed a warning about type mismatch raised by recent versions of cffi

9.15 3.4.2 (8 March 2016)

9.15.1 Resolved issues

• Fix renaming of package for install command.

9.16 3.4.1 (21 February 2016)

9.16.1 New features

• Added option to install the library under the Cryptodome package (instead of Crypto).

9.17 3.4 (7 February 2016)

9.17.1 New features

• Added Crypto.PublicKey.ECC module (NIST P-256 curve only), including export/import of ECC keys.

• Added support for ECDSA (FIPS 186-3 and RFC6979).

• For CBC/CFB/OFB/CTR cipher objects, encrypt() and decrypt() cannot be intermixed.

• CBC/CFB/OFB, the cipher objects have both IV and iv attributes. new() accepts IV as well as iv as param-
eter.

• For CFB/OPENPGP cipher object, encrypt() and decrypt() do not require the plaintext or ciphertext
pieces to have length multiple of the CFB segment size.

• Added dedicated tests for all cipher modes, including NIST test vectors

• CTR/CCM/EAX/GCM/SIV/Salsa20/ChaCha20 objects expose the nonce attribute.

• For performance reasons, CCM cipher optionally accepted a pre-declaration of the length of the associated data,
but never checked if the actual data passed to the cipher really matched that length. Such check is now enforced.

• CTR cipher objects accept parameter nonce and possibly initial_value in alternative to counter
(which is deprecated).

• All iv/IV and nonce parameters are optional. If not provided, they will be randomly generated (exception:
nonce for CTR mode in case of block sizes smaller than 16 bytes).

• Refactored ARC2 cipher.

• Added Crypto.Cipher.DES3.adjust_key_parity() function.

• Added RSA.import_key as an alias to the deprecated RSA.importKey (same for the DSA module).

• Added size_in_bits() and size_in_bytes() methods to RsaKey.

9.15. 3.4.2 (8 March 2016) 73

PyCryptodome Documentation, Release 3.6.1

9.17.2 Resolved issues

• RSA key size is now returned correctly in RsaKey.__repr__() method (kudos to hannesv).

• CTR mode does not modify anymore counter parameter passed to new() method.

• CTR raises OverflowError instead of ValueError when the counter wraps around.

• PEM files with Windows newlines could not be imported.

• Crypto.IO.PEM and Crypto.IO.PKCS8 used to accept empty passphrases.

• GH#6: NotImplementedError now raised for unsupported methods sign, verify, encrypt, decrypt,
blind, unblind and size in objects RsaKey, DsaKey, ElGamalKey.

9.17.3 Breaks in compatibility

• Parameter segment_size cannot be 0 for the CFB mode.

• For OCB ciphers, a final call without parameters to encrypt must end a sequence of calls to encrypt with
data (similarly for decrypt).

• Key size for ARC2, ARC4 and Blowfish must be at least 40 bits long (still very weak).

• DES3 (Triple DES module) does not allow keys that degenerate to Single DES.

• Removed method getRandomNumber in Crypto.Util.number.

• Removed module Crypto.pct_warnings.

• Removed attribute Crypto.PublicKey.RSA.algorithmIdentifier.

9.18 3.3.1 (1 November 2015)

9.18.1 New features

• Opt-in for update() after digest() for SHA-3, keccak, BLAKE2 hashes

9.18.2 Resolved issues

• Removed unused SHA-3 and keccak test vectors, therefore significantly reducing the package from 13MB to
3MB.

9.18.3 Breaks in compatibility

• Removed method copy() from BLAKE2 hashes

• Removed ability to update() a BLAKE2 hash after the first call to (hex)digest()

74 Chapter 9. Changelog

PyCryptodome Documentation, Release 3.6.1

9.19 3.3 (29 October 2015)

9.19.1 New features

• Windows wheels bundle the MPIR library

• Detection of faults occuring during secret RSA operations

• Detection of non-prime (weak) q value in DSA domain parameters

• Added original Keccak hash family (b=1600 only). In the process, simplified the C code base for SHA-3.

• Added SHAKE128 and SHAKE256 (of SHA-3 family)

9.19.2 Resolved issues

• GH#3: gcc 4.4.7 unhappy about double typedef

9.19.3 Breaks in compatibility

• Removed method copy() from all SHA-3 hashes

• Removed ability to update() a SHA-3 hash after the first call to (hex)digest()

9.20 3.2.1 (9 September 2015)

9.20.1 New features

• Windows wheels are automatically built on Appveyor

9.21 3.2 (6 September 2015)

9.21.1 New features

• Added hash functions BLAKE2b and BLAKE2s.

• Added stream cipher ChaCha20.

• Added OCB cipher mode.

• CMAC raises an exception whenever the message length is found to be too large and the chance of collisions
not negligeable.

• New attribute oid for Hash objects with ASN.1 Object ID

• Added Crypto.Signature.pss and Crypto.Signature.pkcs1_15

• Added NIST test vectors (roughly 1200) for PKCS#1 v1.5 and PSS signatures.

9.21.2 Resolved issues

• tomcrypt_macros.h asm error #1

9.19. 3.3 (29 October 2015) 75

PyCryptodome Documentation, Release 3.6.1

9.21.3 Breaks in compatibility

• Removed keyword verify_x509_cert from module method importKey (RSA and DSA).

• Reverted to original PyCrypto behavior of method verify in PKCS1_v1_5 and PKCS1_PSS.

9.22 3.1 (15 March 2015)

9.22.1 New features

• Speed up execution of Public Key algorithms on PyPy, when backed by the Gnu Multiprecision (GMP) library.

• GMP headers and static libraries are not required anymore at the time PyCryptodome is built. Instead, the code
will automatically use the GMP dynamic library (.so/.DLL) if found in the system at runtime.

• Reduced the amount of C code by almost 40% (4700 lines). Modularized and simplified all code (C and Python)
related to block ciphers. Pycryptodome is now free of CPython extensions.

• Add support for CI in Windows via Appveyor.

• RSA and DSA key generation more closely follows FIPS 186-4 (though it is not 100% compliant).

9.22.2 Resolved issues

• None

9.22.3 Breaks in compatibility

• New dependency on ctypes with Python 2.4.

• The counter parameter of a CTR mode cipher must be generated via Crypto.Util.Counter. It cannot
be a generic callable anymore.

• Removed the Crypto.Random.Fortuna package (due to lack of test vectors).

• Removed the Crypto.Hash.new function.

• The allow_wraparound parameter of Crypto.Util.Counter is ignored. An exception is always gen-
erated if the counter is reused.

• DSA.generate, RSA.generate and ElGamal.generate do not accept the progress_func param-
eter anymore.

• Removed Crypto.PublicKey.RSA.RSAImplementation.

• Removed Crypto.PublicKey.DSA.DSAImplementation.

• Removed ambiguous method size() from RSA, DSA and ElGamal keys.

9.23 3.0 (24 June 2014)

9.23.1 New features

• Initial support for PyPy.

76 Chapter 9. Changelog

PyCryptodome Documentation, Release 3.6.1

• SHA-3 hash family based on the April 2014 draft of FIPS 202. See modules Crypto.Hash.SHA3_224/
256/384/512. Initial Keccak patch by Fabrizio Tarizzo.

• Salsa20 stream cipher. See module Crypto.Cipher.Salsa20. Patch by Fabrizio Tarizzo.

• Colin Percival’s scrypt key derivation function (Crypto.Protocol.KDF.scrypt).

• Proper interface to FIPS 186-3 DSA. See module Crypto.Signature.DSS.

• Deterministic DSA (RFC6979). Again, see Crypto.Signature.DSS.

• HMAC-based Extract-and-Expand key derivation function (Crypto.Protocol.KDF.HKDF, RFC5869).

• Shamir’s Secret Sharing protocol, compatible with ssss (128 bits only). See module Crypto.Protocol.
SecretSharing.

• Ability to generate a DSA key given the domain parameters.

• Ability to test installation with a simple python -m Crypto.SelfTest.

9.23.2 Resolved issues

• LP#1193521: mpz_powm_sec() (and Python) crashed when modulus was odd.

• Benchmarks work again (they broke when ECB stopped working if an IV was passed. Patch by Richard Mitchell.

• LP#1178485: removed some catch-all exception handlers. Patch by Richard Mitchell.

• LP#1209399: Removal of Python wrappers caused HMAC to silently produce the wrong data with SHA-2
algorithms.

• LP#1279231: remove dead code that does nothing in SHA-2 hashes. Patch by Richard Mitchell.

• LP#1327081: AESNI code accesses memory beyond buffer end.

• Stricter checks on ciphertext and plaintext size for textbook RSA (kudos to sharego).

9.23.3 Breaks in compatibility

• Removed support for Python < 2.4.

• Removed the following methods from all 3 public key object types (RSA, DSA, ElGamal):

– sign

– verify

– encrypt

– decrypt

– blind

– unblind

Code that uses such methods is doomed anyway. It should be fixed ASAP to use the algorithms available in
Crypto.Signature and Crypto.Cipher.

• The 3 public key object types (RSA, DSA, ElGamal) are now unpickable.

• Symmetric ciphers do not have a default mode anymore (used to be ECB). An expression like AES.new(key)
will now fail. If ECB is the desired mode, one has to explicitly use AES.new(key, AES.MODE_ECB).

• Unsuccessful verification of a signature will now raise an exception [reverted in 3.2].

9.23. 3.0 (24 June 2014) 77

PyCryptodome Documentation, Release 3.6.1

• Removed the Crypto.Random.OSRNG package.

• Removed the Crypto.Util.winrandom module.

• Removed the Crypto.Random.randpool module.

• Removed the Crypto.Cipher.XOR module.

• Removed the Crypto.Protocol.AllOrNothing module.

• Removed the Crypto.Protocol.Chaffing module.

• Removed the parameters disabled_shortcut and overflow from Crypto.Util.Counter.new.

9.23.4 Other changes

• Crypto.Random stops being a userspace CSPRNG. It is now a pure wrapper over os.urandom.

• Added certain resistance against side-channel attacks for GHASH (GCM) and DSA.

• More test vectors for HMAC-RIPEMD-160.

• Update libtomcrypt headers and code to v1.17 (kudos to Richard Mitchell).

• RSA and DSA keys are checked for consistency as they are imported.

• Simplified build process by removing autoconf.

• Speed optimization to PBKDF2.

• Add support for MSVC.

• Replaced HMAC code with a BSD implementation. Clarified that starting from the fork, all contributions are
released under the BSD license.

78 Chapter 9. Changelog

CHAPTER 10

License

The source code in PyCryptodome is partially in the public domain and partially released under the BSD 2-Clause
license.

In either case, there are minimal if no restrictions on the redistribution, modification and usage of the software.

10.1 Public domain

All code originating from PyCrypto is free and unencumbered software released into the public domain.

Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as
a compiled binary, for any purpose, commercial or non-commercial, and by any means.

In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright
interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the
detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of
all present and future rights to this software under copyright law.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

For more information, please refer to <http://unlicense.org>

10.2 BSD license

All direct contributions to PyCryptodome are released under the following license. The copyright of each piece belongs
to the respective author.

79

http://unlicense.org

PyCryptodome Documentation, Release 3.6.1

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

10.3 OCB license

The OCB cipher mode is patended in US. The directory Doc/ocb contains three free licenses for implementors and
users. As a general statement, OCB can be freely used for software not meant for military purposes. Contact your
attorney for further information.

10.4 Apache 2.0 license (Wycheproof)

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

80 Chapter 10. License

http://www.apache.org/licenses/

PyCryptodome Documentation, Release 3.6.1

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work (an
example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this Li-
cense, Derivative Works shall not include works that remain separable from, or merely link (or bind
by name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally sub-
mitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition,
“submitted” means any form of electronic, verbal, or written communication sent to the Licensor or
its representatives, including but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or on behalf of, the Licen-
sor for the purpose of discussing and improving the Work, but excluding communication that is
conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contri-
bution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License;
and

(b) You must cause any modified files to carry prominent notices stating that You changed the
files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works

10.4. Apache 2.0 license (Wycheproof) 81

PyCryptodome Documentation, Release 3.6.1

that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an addendum to the NOTICE
text from the Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions
of this License, without any additional terms or conditions. Notwithstanding the above, nothing
herein shall supersede or modify the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of
your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t
include the brackets!) The text should be enclosed in the appropriate comment syntax for
the file format. We also recommend that a file or class name and description of purpose be

82 Chapter 10. License

PyCryptodome Documentation, Release 3.6.1

included on the same “printed page” as the copyright notice for easier identification within
third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

10.4. Apache 2.0 license (Wycheproof) 83

http://www.apache.org/licenses/LICENSE-2.0

PyCryptodome Documentation, Release 3.6.1

84 Chapter 10. License

Python Module Index

c
Crypto.IO.PEM, 47
Crypto.IO.PKCS8, 48
Crypto.Protocol.KDF, 43
Crypto.Protocol.SecretSharing, 45
Crypto.PublicKey.DSA, 34
Crypto.PublicKey.ECC, 38
Crypto.PublicKey.ElGamal, 41
Crypto.PublicKey.RSA, 29
Crypto.Util.asn1, 50
Crypto.Util.Counter, 56
Crypto.Util.number, 57
Crypto.Util.Padding, 54
Crypto.Util.RFC1751, 55
Crypto.Util.strxor, 55

85

PyCryptodome Documentation, Release 3.6.1

86 Python Module Index

Index

A
add() (Crypto.Util.asn1.DerSetOf method), 54

B
bytes_to_long() (in module Crypto.Util.number), 57

C
combine() (Crypto.Protocol.SecretSharing.Shamir static

method), 46
construct() (in module Crypto.PublicKey.DSA), 35
construct() (in module Crypto.PublicKey.ECC), 39
construct() (in module Crypto.PublicKey.ElGamal), 42
construct() (in module Crypto.PublicKey.RSA), 30
Crypto.IO.PEM (module), 47
Crypto.IO.PKCS8 (module), 48
Crypto.Protocol.KDF (module), 43
Crypto.Protocol.SecretSharing (module), 45
Crypto.PublicKey.DSA (module), 34
Crypto.PublicKey.ECC (module), 38
Crypto.PublicKey.ElGamal (module), 41
Crypto.PublicKey.RSA (module), 29
Crypto.Random.get_random_bytes() (built-in function),

49
Crypto.Random.random.choice() (built-in function), 49
Crypto.Random.random.getrandbits() (built-in function),

49
Crypto.Random.random.randint() (built-in function), 49
Crypto.Random.random.randrange() (built-in function),

49
Crypto.Random.random.sample() (built-in function), 49
Crypto.Random.random.shuffle() (built-in function), 49
Crypto.Util.asn1 (module), 50
Crypto.Util.Counter (module), 56
Crypto.Util.number (module), 57
Crypto.Util.Padding (module), 54
Crypto.Util.RFC1751 (module), 55
Crypto.Util.strxor (module), 55

D
decode() (Crypto.Util.asn1.DerBitString method), 53
decode() (Crypto.Util.asn1.DerInteger method), 50
decode() (Crypto.Util.asn1.DerObject method), 50
decode() (Crypto.Util.asn1.DerObjectId method), 53
decode() (Crypto.Util.asn1.DerSequence method), 52
decode() (Crypto.Util.asn1.DerSetOf method), 54
decode() (in module Crypto.IO.PEM), 47
DerBitString (class in Crypto.Util.asn1), 53
DerInteger (class in Crypto.Util.asn1), 50
DerNull (class in Crypto.Util.asn1), 51
DerObject (class in Crypto.Util.asn1), 50
DerObjectId (class in Crypto.Util.asn1), 52
DerOctetString (class in Crypto.Util.asn1), 50
DerSequence (class in Crypto.Util.asn1), 51
DerSetOf (class in Crypto.Util.asn1), 53
domain() (Crypto.PublicKey.DSA.DsaKey method), 35
double() (Crypto.PublicKey.ECC.EccPoint method), 39
DsaKey (class in Crypto.PublicKey.DSA), 35

E
EccKey (class in Crypto.PublicKey.ECC), 38
EccPoint (class in Crypto.PublicKey.ECC), 39
ElGamalKey (class in Crypto.PublicKey.ElGamal), 42
encode() (Crypto.Util.asn1.DerBitString method), 53
encode() (Crypto.Util.asn1.DerInteger method), 50
encode() (Crypto.Util.asn1.DerObject method), 50
encode() (Crypto.Util.asn1.DerObjectId method), 53
encode() (Crypto.Util.asn1.DerSequence method), 52
encode() (Crypto.Util.asn1.DerSetOf method), 54
encode() (in module Crypto.IO.PEM), 47
english_to_key() (in module Crypto.Util.RFC1751), 55
export_key() (Crypto.PublicKey.DSA.DsaKey method),

36
export_key() (Crypto.PublicKey.ECC.EccKey method),

38
export_key() (Crypto.PublicKey.RSA.RsaKey method),

32

87

PyCryptodome Documentation, Release 3.6.1

exportKey() (Crypto.PublicKey.DSA.DsaKey method),
35

exportKey() (Crypto.PublicKey.RSA.RsaKey method),
31

G
GCD() (in module Crypto.Util.number), 57
generate() (in module Crypto.PublicKey.DSA), 34
generate() (in module Crypto.PublicKey.ECC), 40
generate() (in module Crypto.PublicKey.ElGamal), 41
generate() (in module Crypto.PublicKey.RSA), 29
getPrime() (in module Crypto.Util.number), 57
getRandomInteger() (in module Crypto.Util.number), 57
getRandomNBitInteger() (in module

Crypto.Util.number), 57
getRandomRange() (in module Crypto.Util.number), 57
getStrongPrime() (in module Crypto.Util.number), 57

H
has_private() (Crypto.PublicKey.DSA.DsaKey method),

37
has_private() (Crypto.PublicKey.ECC.EccKey method),

39
has_private() (Crypto.PublicKey.ElGamal.ElGamalKey

method), 42
has_private() (Crypto.PublicKey.RSA.RsaKey method),

33
hasInts() (Crypto.Util.asn1.DerSequence method), 52
hasOnlyInts() (Crypto.Util.asn1.DerSequence method),

52
HKDF() (in module Crypto.Protocol.KDF), 43

I
import_key() (in module Crypto.PublicKey.DSA), 37
import_key() (in module Crypto.PublicKey.ECC), 40
import_key() (in module Crypto.PublicKey.RSA), 30
inverse() (in module Crypto.Util.number), 58
isPrime() (in module Crypto.Util.number), 58

K
key_to_english() (in module Crypto.Util.RFC1751), 55

L
long_to_bytes() (in module Crypto.Util.number), 58

N
new() (in module Crypto.Util.Counter), 56

O
oid (in module Crypto.PublicKey.RSA), 33

P
pad() (in module Crypto.Util.Padding), 54

PBKDF1() (in module Crypto.Protocol.KDF), 43
PBKDF2() (in module Crypto.Protocol.KDF), 44
public_key() (Crypto.PublicKey.ECC.EccKey method),

39
publickey() (Crypto.PublicKey.DSA.DsaKey method), 37
publickey() (Crypto.PublicKey.ElGamal.ElGamalKey

method), 42
publickey() (Crypto.PublicKey.RSA.RsaKey method), 33

R
RsaKey (class in Crypto.PublicKey.RSA), 31

S
scrypt() (in module Crypto.Protocol.KDF), 44
Shamir (class in Crypto.Protocol.SecretSharing), 45
size() (in module Crypto.Util.number), 58
size_in_bits() (Crypto.PublicKey.RSA.RsaKey method),

33
size_in_bytes() (Crypto.PublicKey.RSA.RsaKey

method), 33
split() (Crypto.Protocol.SecretSharing.Shamir static

method), 46
strxor() (in module Crypto.Util.strxor), 55
strxor_c() (in module Crypto.Util.strxor), 55

U
unpad() (in module Crypto.Util.Padding), 54
UnsupportedEccFeature, 39
unwrap() (in module Crypto.IO.PKCS8), 49

W
wrap() (in module Crypto.IO.PKCS8), 48

88 Index

	PyCryptodome
	Features
	Installation
	Compiling in Linux Ubuntu
	Compiling in Linux Fedora
	Windows (from sources, Python 2.x, Python <=3.2)
	Windows (from sources, Python 3.3 and 3.4)
	Windows (from sources, Python 3.5 and newer)
	Documentation
	PGP verification

	Compatibility with PyCrypto
	API documentation
	Crypto.Cipher package
	Introduction
	API principles
	Symmetric ciphers
	Legacy ciphers

	Crypto.Signature package
	Signing a message
	Verifying a signature
	Available mechanisms

	Crypto.Hash package
	API principles
	Attributes of hash objects
	Modern hash algorithms
	Extensible-Output Functions (XOF)
	Message Authentication Code (MAC) algorithms
	Historich hash algorithms

	Crypto.PublicKey package
	API principles
	Available key types
	Obsolete key type

	Crypto.Protocol package
	Key Derivation Functions
	Secret Sharing Schemes

	Crypto.IO package
	PEM
	PKCS#8

	Crypto.Random package
	Crypto.Random.random module

	Crypto.Util package
	Crypto.Util.asn1 module
	Crypto.Util.Padding module
	Crypto.Util.RFC1751 module
	Crypto.Util.strxor module
	Crypto.Util.Counter module
	Crypto.Util.number module

	Examples
	Encrypt data with AES
	Generate an RSA key
	Generate public key and private key
	Encrypt data with RSA

	Contribute and support
	Future plans
	Changelog
	3.6.1 (15 April 2018)
	New features
	Resolved issues

	3.6.0 (8 April 2018)
	New features
	Resolved issues

	3.5.1 (8 March 2018)
	Resolved issues

	3.5.0 (7 March 2018)
	New features
	Resolved issues
	Breaks in compatibility

	3.4.12 (5 February 2018)
	Resolved issues

	3.4.11 (5 February 2018)
	Resolved issues

	3.4.10 (2 February 2018)
	Resolved issues

	3.4.9 (1 February 2018)
	New features
	Resolved issues

	3.4.8 (27 January 2018)
	New features
	Resolved issues

	3.4.7 (26 August 2017)
	New features
	Resolved issues

	3.4.6 (18 May 2017)
	Resolved issues

	3.4.5 (6 February 2017)
	Resolved issues

	3.4.4 (1 February 2017)
	Resolved issues

	3.4.3 (17 October 2016)
	Resolved issues

	3.4.2 (8 March 2016)
	Resolved issues

	3.4.1 (21 February 2016)
	New features

	3.4 (7 February 2016)
	New features
	Resolved issues
	Breaks in compatibility

	3.3.1 (1 November 2015)
	New features
	Resolved issues
	Breaks in compatibility

	3.3 (29 October 2015)
	New features
	Resolved issues
	Breaks in compatibility

	3.2.1 (9 September 2015)
	New features

	3.2 (6 September 2015)
	New features
	Resolved issues
	Breaks in compatibility

	3.1 (15 March 2015)
	New features
	Resolved issues
	Breaks in compatibility

	3.0 (24 June 2014)
	New features
	Resolved issues
	Breaks in compatibility
	Other changes

	License
	Public domain
	BSD license
	OCB license
	Apache 2.0 license (Wycheproof)

	Python Module Index

